LNAI'2099

Philippe de Groote

Glyn Morrill
Christian Retoré (Eds.)

Logical Aspects
of Computational
Linguistics

Le Croisic, France, June 2001
Proceedings

&)) Springer

Philippe de Groote Glyn Momu
Christian Retoré (Eds.) B —

Logical Aspects
of Computational
Linguistics

4th International Conference, LACL 2001
Le Croisic, France, June 27-29, 2001
Proceedings

&) Springer

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saabriicken, Germany

Volume Editor

Philippe de Groote

INRIA Lorraine

615 rue du Jardin Botanique, B.P. 101
54602 Villers-1&¢s-Nancy Cedex, France
E-mail: Philippe.deGroote @loria.fr

Glyn Morrill

Universitat Politécnica de Catalunya

Jordi Girona Salgado, 1-3, 08028 Barcelona, Spain
E-mail: morrill@lsi.upc.es

Christian Retoré

Institut de recherche en Informatique de Nantes (IRIN), Faculté des Sciences
2, rue de la Houssinigre, B.P. 92208, 44322 Nantes Cedex 03, France
E-mail: retore @irisa.fr

Cataloging-in-Publication Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Logical aspects of computational linguistics : 4th international conference ;
proceedings / LACL 2001, LeCroisic, France, June 27 - 29, 2001. Philippe
de Groote ... (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong
Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2001
(Lecture notes in computer science ; Vol. 2099 : Lecture notes in
artificial intelligence)
ISBN 3-540-42273-0

CR Subject Classification (1998): 1.2, F.4.1
ISBN 3-540-42273-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concemed, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 10839469 06/3142 543210

Preface

This volume contains the proceedings of the 4th International Conference on Log-
ical Aspects of Computational Linguistics, held June 27-29, 2001 in Le Croisic,
France. The LACL conferences aim to provide a forum for the presentation and
discussion of current research in all the formal and logical aspects of computa-
tional linguistics.

The program committee selected 16 papers from submissions of overall high
quality. The papers cover a wide range of topics, including categorial grammars,
dependency grammars, formal language theory, grammatical inference, hyper-
intensional semantics, minimalism, and type-logical semantics, by authors from
Australia, Canada, Denmark, France, Germany, Italy, The Netherlands, Poland,
Spain, Sweden, United Kingdom, and USA.

M. Moortgat (Universiteit Utrecht), G. K. Pullum (University of Califor-
nia, Santa Cruz), and M. Steedman (University of Edinburgh) presented in-
vited talks, on “Structural Equations in Language Learning”, “On the Distinc-
tion between Model-Theoretic and Generative-Enumerative Syntactic Frame-
works”, and “Reconciling Type-Logical and Combinatory Extensions of Catego-
rial Grammar” respectively.

We would like to thank all the people who made this 4th LACL possible: the
program committee, the external reviewers, the organization committee, and the
LACL sponsors.

April 2001 Philippe de Groote
& Glyn Morrill

VI Organization

Organization

Program Committee

W. Buszkowski (Poznan)

R. Crouch, (Palo Alto)

A. Dikovsky (Nantes)

M. Dymetman (Grenoble)

C. Gardent (Nancy)

Ph. de Groote, co-chair (Nancy)

Organizing Committee

B. Daille (Nantes)

A. Dikovsky (Nantes)
A. Foret (Rennes)

E. Lebret (Rennes)

Additional Referees

M. Kanazawa (Tokyo)

G. Morrill, co-chair {Barcelona)
R. Muskens (Tilburg)

F. Pfenning (Pittsburgh)

B. Rounds, (Ann Arbor)

E. Stabler (Los Angeles)

C. Piliere, publicity chair (Nancy)
C. Retoré, chair (Rennes)
P. Sebillot (Rennes)

J.-M. Andreoli T. Holloway King J. Marciniec
P. Blackburn M. Kandulski J.-Y. Marion

C. Brun F. Lamarche

G. Perrier

Table of Contents

Invited Talks

Structural Equations in Language Learning
Michael Moortgat

On the Distinction between Model-Theoretic and Generative-Enumerative
Syntactic Frameworkst
Geoffrey K. Pullum, Barbara C. Scholz

Contributed Papers

A Formal Definition of Bottom-Up Embedded Push-Down Automata and
Their Tabulation Technique i i,
Miguel A. Alonso, Eric de la Clergerie, Manuel Vilares

An Algebraic Approach to French Sentence Structure...................
Daniele Bargelli, Joachim Lambek

Deductive Parsing of Visual Languageso,
Paolo Bottoni, Bernd Meyer, Kim Marriott, Francesco Parisi Presicce

Lambek Grammars Based on Pregroups
Wojciech Buszkowsk:i

An Algebraic Analysis of Clitic Pronouns in Italian.....................
Claudia Casadio, Joachim Lambek

Consistent Identification in the Limit of Any of the Classes k-Valued Is
NP-hardo

Christophe Costa Floréncio

Polarized Non-projective Dependency Grammars.......................
Alexander Dikouvsky

On Mixing Deduction and Substitution in Lambek Categorial Grammars. .
Annie Foret

A Framework for the Hyperintensional Semantics of Natural Language
with Two Implementations oo ..
Chris Foz, Shalom Lappin

A Characterization of Minimalist Languages...........................
Henk Harkema

VIII Table of Contents

Part of Speech Tagging from a Logical Point of View 212
Torbjorn Lager, Joakim Nivre

Transforming Linear Context—Free Rewriting Systems into Minimalist

GIAITHTIATS .« . ot ottt ettt e e e e et e e 228
Jens Michaelis

Recognizing Head Movement 245
Edward P. Stabler

Combinators for Paraconsistent Attitudes 261
Jargen Villadsen

Combining Syntax and Pragmatic Knowledge for the Understanding of
Spontaneous Spoken Sentencesc.iiiiiiiiiiiinai.. 279
Jeanne Villaneau, Jean-Yves Antoine, Olivier Ridouz

Atomicity of Some Categorially Polyvalent Modifiers 296
R. Zuber

Author Index 311

Structural Equations in Language Learning

Michael Moortgat

Utrecht Institute of Linguistics — OTS
Trans 10, 3512 JK Utrecht, The Netherlands
Michael.Moortgat@let.uu.nl

Abstract. In categorial systems with a fixed structural component, the
learning problem comes down to finding the solution for a set of type-
assignment equations. A hard-wired structural component is problematic
if one want to address issues of structural variation. Our starting point is
a type-logical architecture with separate modules for the logical and the
structural components of the computational system. The logical com-
ponent expresses invariants of grammatical composition; the structural
component captures variation in the realization of the correspondence
between form and meaning. Learning in this setting involves finding the
solution to both the type-assignment equations and the structural equa-
tions of the language at hand. We develop a view on these two subtasks
which pictures learning as a process moving through a two-stage cycle.
In the first phase of the cycle, type assignments are computed statically
from structures. In the second phase, the lexicon is enhanced with fa-
cilities for structural reasoning. These make it possible to dynamically
relate structures during on-line computation, or to establish off-line lexi-
cal generalizations. We report on the initial experiments in [15] to apply
this method in the context of the Spoken Dutch Corpus.

For the general type-logical background, we refer to [12]; §1 has a brief
recap of some key features.

1 Constants and Variation

One can think of type-logical grammar as a functional programming language
with some special purpose features to customize it for natural language process-
ing tasks. Basic constructs are demonstrations of the form I" - A, stating that
a structure I' is a well-formed expression of type A. These statements are the
outcome of a process of computation. Our programming language has a built-in
vocabulary of logical constants to construct the type formulas over some set of
atomic formulas in terms of the indexed unary and binary operations of (1a).
Parallel to the formula language, we have the structure-building operations of
(1b) with (- o;) and (-} as counterparts of e; and ¢; respectively. The indices
it and j are taken from given, finite sets I, J which we refer to as composition
modes.

(1) a. Typ::= Atom | O;Typ | O;Typ | Typ &; Typ | Typ/iTyp | Typ\:Typ
b. Struc ::= Typ | (Struc)? | Struc o; Struc

P. de Groote, G. Morrill, C. Retoré (Eds.): LACL 2001, LNAI 2099, pp. 1-16, 2001.
© Springer-Verlag Berlin Heidelberg 2001

2 Michael Moortgat

In presenting the rules of computation characterizing the derivability relation,
we keep logical and structural aspects apart. The different composition modes
all have the same logical rules. But we can key access to different structural rules
by means of the mode distinctions.

Let us consider the logical component first. For each type-forming operation
in (1a) there is a constructor rule (rule of use, assembly) and a destructor rule
(rule of proof, disassembly). These rules can be presented in a number of equiva-
lent ways: algebraically, in Gentzen or natural deduction format, or in a proof net
presentation. The assembly/disassembly duality comes out particulary clearly in
the algebraic presentation, where we have the residuation laws of (2). In the nat-
ural deduction format, these laws will turn up as Introduction/Elimination rules;
in the Gentzen format as Left/Right introduction rules.

@) O;AFB if Ar0;B
A-C/;B i Ae,BFC iffi BF A\C

The composition of natural language meaning proceeds along the lines of the
Curry-Howard interpretation of derivations, which reads off the meaning assem-
bly from the logical inference steps that make up a computation. In this sense,
the composition of meaning is invariant across languages — it is fully determined
by the elimination/introduction rules for the grammatical constants. Languages
show variation in the structural realization of the correspondence between form
and meaning. Such variation is captured by the structural component of the
computational system. Structural rules have the status of non-logical arioms
(or postulates). The structural rules we consider in this paper are linear trans-
formations:! they reassemble grammatical material, but they cannot duplicate
or waste it. The familiar rules of Associativity and Commutativity in (3) can
serve as illustrations. In a global form, these rules destroy essential grammatical
information. But we will see in §2.2 how they can be tamed.

(3) AeBFBeA
(AeB)eC - Ae(Be()

To obtain a type-logical grammar over a terminal vocabulary X, we have to
specify a lexicon Lex C X' x Type, assigning each vocabulary item a finite number
of types. A grammar, then, is a structure G = (Lex, Op), where Op is the union
of the logical and the structural rules. Let L(G, B) be the set of strings of type
B generated by G, and let Struc(A4;,. .., A,) be the set of structure trees with
yield A;,..., Ay,. For a string o0 = w; ... - w, € £, we say that o € L(G, B)
iff there are A;,..., A, and I' € Struc(A;,...,A,) such that for 1 < i < n,
(wi, A;) € Lex, and I' + B. To obtain L(G), the language generated by the
type-logical grammar G, we compute L(G, B) for some fixed (finite set of) goal
type(s)/start symbol(s) B.

! That is, we do not address multiple-use issues like parasitic gaps here, which might
require (a controlled form of) Contraction.

Structural Equations in Language Learning 3

2 Structural Reasoning in Learning

The modular treatment of logical and structural reasoning naturally suggests
that we break up the learning problem in two subtasks. One task consists in
finding appropriate categorization for the words in X' as the elementary building
blocks for meaning composition. This is essentially the problem of computing
type-assignments as we know it from classical categorial learning theory. The
second subtask addresses the question: What is the dynamic potential of words in
syntax? Answering this question amounts to solving structural equations within
a space set by universal grammar.

In tackling the second subtask, we will rely heavily on the unary constant
¢ and its residual 0. As we have seen in §1, the binary product e captures
the composition of grammatical parts, while the residual implications / and \
express incompleteness with respect to the composition relation. Extending the
vocabulary with the unary constants ¢, O substantially increases the analytical
power of the categorial type language. This can be seen already in the base logic
(i.e. the pure residuation logic, with empty structural module): the unary oper-
ators make it possible to refine type-assignments that would be overgenerating
without the unary decoration. Moreover, in systems with a non-empty struc-
tural component, the unary operators can provide lexically anchored control
over structural reasoning. We discuss these two aspects in turn.

In the base logic, the fundamental derivability pattern created by the unary
operators is QOA + A + OOQA. One can exploit this pattern to obtain the
agreement configurations of (4).

OUA\B\ B OOA\BY B OUA\BY B
(4) OOAe{ A\BF B Ae{ A\B+B 00Ae{ A\BY B
00A\B+ B Q0OA\B+ B DOA\B B

The treatment of polarity sensitive items in [2] illustrates this use of modal deco-
ration. Consider the contrast between ‘Nobody left yet’ with the negative polar-
ity item ‘yet’ and ‘*Somebody left yet’. The negative polarity trigger ‘nobody’
is assigned the type s/(np\O¢s), whereas ‘somebody’ has the undecorated type
s/(np\s). The negative polarity item ‘yet’ is typed as 0<s\O<s — it requires
a trigger such as ‘nobody’ to check the 0¢ decoration in its result subtype. In
the base logic, we have s/(np\0O¢s) F s/(np\s), i.e. the O decoration on argu-
ment subtypes can be simplified away, allowing a derivation of e.g. ‘Nobody left’
where there is no polarity item to be checked. This strategy of unary decoration
is extended in [3] to lexically enforce constraints on the scopal possibilities of
generalized quantifier expressions such as discussed in [1].

For the use of unary type decoration to provide controlled access to structural
reasoning, we can rely on the results of [11]. In that paper, we present embedding
translations ¥ from source logics £ to target logics £¢, in the sense that A - B
is derivable in £ iff A" - B" is derivable in £’¢. The translations ! decorate
the type assignments of the source logic with the unary operators <), O in such
a way that they licence access to restricted versions of the structural rules.

4 Michael Moortgat

In the following sections, we use this modalization strategy to develop our
two-stage view on the learning process. The first stage consists of learning from
structures in the base logic. Because the base logic has no facilities for structural
reasoning, the lexical ambiguity load in this phase soon becomes prohibitive.
In the second stage, the lexicon is optimized by shifting to modalized (¢, O)
type assignments. The modal decoration is designed in such a way that lexical
ambiguity is reduced to derivational polymorphism. We will assume that the
learning process cycles through these two stages. To carry out this program, a
number of questions have to be answered:

— What kind of MODAL DECORATION do we envisage?
— What is the STRUCTURAL PACKAGE which delimits the space for variation?

We discuss these questions in §2.2. First, we address the problem of learning
from structures in the base logic.

2.1 Solving Type Equations by Hypothetical Reasoning

The unification perspective on learning type assignments from structures is well
understood — we refer the reader to the seminal work of [5], and to [9]. Here
we present the problem of solving type assignment equations from a Logic Pro-
gramming perspective in order to highlight the role of hypothetical reasoning in
the process.

Consider the standard abstract interpreter for logic programs (see for ex-
ample [16]). The resolution algorithm takes as input a program P and a goal
G and initializes the resolvent to be the input goal G. While the resolvent is
non-empty, the algorithm chooses a goal A from the resolvent and a matching
program clause A’ — By,..., By (n > 0) from P such that A and A’ unify with
mgu 6. A is removed from the resolvent and By, ..., B, added instead, with
applied to the resolvent and to G. As output, the algorithm produces G, if the
resolvent is empty, or failure, if the empty clause cannot be derived.

(6] presents a variant on this refutation algorithm which does not return
failure for an incomplete derivation, but instead extracts information from the
non-empty resolvent which provides the conditional answer that would make the
goal G derivable. In [6] the conditional answer approach is illustrated with the
polymorphic type inference problem from lambda calculus. This illustration can
be straightforwardly adapted to our categorial type inference problem. Writing
I'aA for functor-argument structures with the functor as the left component and
I'> A for such structures with the functor as the right component, the ‘program
clauses’ for categorial type assignment appear as (5).

(5)F'<A-AifT+A/Band A-B T'bA-AifT'FBand A+ B\A

In order to derive the empty clause, the program would need a lexicon of type
assignment facts. In the absence of such a lexicon (or in the case of an incomplete
lexicon), the conditional answer derivation returns the resolvent with the type

Structural Equations in Language Learning 5

assignment goals that would be needed for a successful refutation. The condi-
tional answer is optimized by factoring, i.e. by the contraction of unifiable type
assignment goals. A sample run of the algorithm is given below.

input Alice > dreams, Lewis b dreams, (the < girl) > dreams, Alice > (knows <
Lewis), Lewis > (knows < Alice), (the < mathematician) > (knows « Alice),
Alice > (knows « (the < mathematician)), Alice > (irritates < (the < math-
ematician)), (the < mathematician) o (irritates < Alice), Alice > (dreams >
(about « Lewis)), Lewis > (wrote < (the < book)), Lewis > (knows < (the <
girl)), Lewis > (wrote < (the < (nice < book))), (the < girl) > (knows < (the
< book)), (the < girl) > (knows < (the < (book & (which < (irritates < (the <
mathematician)))))), (the < girl) > (knows < (the < (book > ((which < (the «
mathematician)) < wrote)))), ...

output The term assignments of (6). With the gloss A =n, B =np, C = s for
the type variables, these will look familiar enough.

(6) Alice - B Lewis - B
dreams - B\C thet B/ A
girl- A mathematician - A
book - A nice A/ A
about - ((B\C)\(B\C))/B irritates - (B\C)/B
knows - (B\C)/B wrote - (B\C)/B

which F (A\A)/(B\C) which - ((A\A)/((B\C)/B))/B

The interesting point of this run is the two type assignments for ‘which’: one
for subject relativization (obtained from ‘... which irritates Alice’), the other for
object relativization (from ‘... which Lewis wrote’) — and, of course, many oth-
ers for different structural contexts. Factoring (unification) cannot relate these
assignments: this would require structural reasoning. To see that the learning al-
gorithm is missing a generalization here, consider the meaning assembly for these
two type assignments to the relative pronoun. The lambda program of (7a), ex-
pressing property intersection, would be adequate for the subject relativization
type. To obtain appropriate meaning assembly for the object relativization as-
signment, one would need the lambda program of (7b).

(7) a. which F (n\n)/(np\s) AzAyrz.(z 2) A(y z) (= wh)
b. which - ((n\n)/((np\s)/np))/np Az'Ay'MyAz.((y' 2) =) A (y 2)

The point is that these two meaning programs are not unrelated. We can see
this by analysing them from the perspective of LP (or Multiplicative Linear
Logic) — a system which removes all structural obstacles to meaning composi-
tion in the sense that free restructuring and reordering under Associativity and
Commutativity are available. In LP, the different type assignments are simply
structural realizations of one and the same meaning. See the derivation of Fig-
ure 1, which produces the proof term of (8). Unfortunately, LP is of little use
as a framework for natural language analysis: apart from the required meaning
assembly of (8), there is a second derivation for the type transition of Figure 1

6 Michael Moortgat

producing the proof term Ay;.Aze.(wh (22 1)), which gets the thematic roles of
subject and object wrong. Can we find a way of controlling structural reasoning,
so that we can do with a single type assignment to the relative pronoun, while
keeping the thematic structure intact?

[r1 F (np\s)/np]®> [ro + np]*
[py + np)? rioro - np\s
Pro(tiom)F s)

[/E]

(pyori)orpt s [éSS]
which ro(pion)ts {\ ;;nm]
)/ (np\) pont s
[pz F nJ* whicho (p; o r) - n\n \E]

2o (whicho (prori)) F
p2 o ((whichop;)ori)Fn
Ghiop)ortan M
wich p, F)/ (op\e)/) V1],
Which F ((m\)/ (np\)/ mp)) /P

[Ass]

Fig. 1. Relating subject and object relativization in LP.

(8) wh I—LP Ay1.Aze.(wh Azg.{(z2 20) y1)) =g
Ay1.Az2.A23.724.(((z2 T4) 11) A (23 74))

2.2 Modal Decorations for Solving Structural Equations

To answer this question, we turn to the second phase of the learning process. Let
type(w) be the set of types which the algorithm of §2.1 associates with a word
w in the base logic lexicon: type(w) = {A4 | (w, A) € Lex}. The type assignments
found in §2.1 are built up in terms of the binary connectives / and \: they do not
exploit the full type language, and they do not appeal to structural reasoning. In
the second phase of the learning cycle, these limitations are lifted. We translate
the question at the end of the previous section as follows: Can we find a modal
decoration ! and an associated structural package R which would allow the
learner to identify a B € type(w) such that B" I- A for all A € type(w)? Or, if we
opt for a weaker package R that makes unique type-assignment unattainable,
can we at least reduce the cardinality of type(w) by removing some derivable type
assignments from the type-set? In what follows, we consider various options for
4 and for R.

Structural Equations in Language Learning 7

Consider first the decorations |-{,[-] : B — B of (9) for input and output
polarities respectively.?

(9) o] = P [Pl = P
|AeB| =¢{0|A|e$0|B| [AeB] = [B]e[A]
lA/B] = <¢O|A]/[B] [A/B] =[A]/¢D|B]
[B\A] = [BI\¢O[A4] [B\A] =O0|BJ\[A]

The effect of ||, [-] is to prefix all input subformulas with $0. In the absence
of structural rules, this modal marking would indeed be a pure embellishment,
in the sense that B - o' = A if BO | [e'} = [A]. But we are interested in
the situation where the $0 decoration gives access to structural reasoning. As
a crude first attempt, consider the postulate package (10) which would be the
modal analogue of (3), i.e. it allows full restructuring and reordering under <
control. In the Associativity postulates, one of the factors A; (1 < i < 3) is of
the form ¢ A’, with the rule label indexed accordingly.

(10) Are(Aze A3)F (A1 e Ag)e A3 [A)]
(A1eA2)e A3 A1 e (Aze As) [Az_l}

BeOAFGAeB]
OBeAF Ae OB ic-Y

With the package (10), we again have the embedding
LPFel'= A iff B+ (10)F oI = [A]
Consider again the type assignments we computed in (6) for the relative pronoun:

type(which) = {(n\n)/(np\s),
((n}\n)/ ((np\s)/np))/np,

Calculating |-] for the first of these, we obtain (11)

(11) L(n\n)/(np\s)| = OO|n\n]/[np\s]
= 00([n]\OD(n])/(0O|np|\[s])
= 00(n\OOn)/(GOnp\s)

which indeed gives the type transformation
¢0(n\$0n)/(OOnp\s) F ((n\n)/((np\s)/np))/np

In Figure 2, we give an example derived from the modalized type assignment
to the relative pronoun. We concentrate on the subderivation that realizes non-
peripheral extraction via ¢ controlled structural reasoning. The modal decora-
tion implements the ‘key and lock’ strategy of [14]. For a constituent of type

2 B is the base logic for the binary connectives: the pure residuation logic for /,s,\,
with no structural postulates at all. B is the extended system with the unary
connectives <, 0.

8 Michael Moortgat

QOA, the { component provides access to the structural postulates in (10). At
the point where such a marked constituent has found the structural position
where it can be used by the logical rules, the { key unlocks the O lock: the
control feature is cancelled through the basic law QA F A.

dedicated [p, - Onp)® QE] 0 Alice
((np\s)/pp)/np (pa) F np VE] pp/np “mp /E)

Lewis Jedicated o (pa) ¥ (np\s)/pp too Alice - pp
Lewis . . [/E)
np (dedicated o (p,)) o (to o Alice) - np\s
Lewis o ((dedicated o {p,)} o (to o Alice)) I s
Lewis o (dedicated o ((p,) o (too Alice))) - s
Lewis o (dedicated o ((to o Alice) o (p,))) - s [A
Lewis o ((dedicated o (to o Alice)) o (py)) + s {A
[C
(¢

NE]

[Az]
C)

3l
3t
_1]

E®

}_
(Lewis o (dedicated o (to o Alice)))o (p,) - s
[r1 F OOnp)? (ps) o (Lewis o (dedicated o (to o Alice))) + s
r1 o (Lewis o (dedicated o (to o Alice))) F s N
Lewis o (dedicated o (to o Alice)) - $Onp\s

Fig. 2. Non-peripheral extraction under ¢ control: ‘(the book which) Lewis ded-
icated to Alice’. The (f) sign marks the entry point for an alternative derivation,
driven from an assignment (n\n)/(s/{$Onp) for the relative pronoun. See the
discussion in §2.3.

2.3 Calibration

The situation we have obtained is a crude first approximation in two respects.
First, the modal decoration is overly rich in the sense that every input subfor-
mula is given a chance to engage in structural reasoning. Second, the structural
package (10) is not much better that the global structural reasoning of 81 in
that it allows full reordering and restructuring, this time under ¢ control. The
task here is to find the proper trade-off between the degree of lexical ambiguity
one is prepared to tolerate, and the expressivity of the structural package. We
discuss these two considerations in turn.

STRUCTURAL REASONING Consider first the structural component. The package
in (12) seems to have a pleasant balance between expressivity and structural
constraint. We refer the reader to the discussion of extraction asymmetries be-
tween head-initial and head-final languages in (14], Dutch verb-raising in [13],
and the analysis of French cliticization in [10], all of which are based essentially
on the structural features of (12). In this section, we discuss the postulates in

Structural Equations in Language Learning 9

their schematic form — further fine-tuning in terms of mode distinctions for the
e and operations is straightforward and will be taken into consideration in §3.

(12) OAe(BeC) - (GAeB)eC (Pl1)
OAe(BeC)4-Be(GAeC) (PI2)

(AeB)e OC - (AeHC)e B (Pr2)
(AeB)e OC H- Ao (Be OC) (Prl)

The postulates can be read in two directions. In the F direction, they have the
effect of revealing a ¢ marked constituent, by promoting it from an embedded
position to a position where it is visible for the logical rules: the immediate
left or right daughter of the structural root node.® In the - direction, they
hide a marked constituent, pushing it from a visible position to an embedded
position. Apart from the - asymmetry, the postulates preserve the left-right
asymmetry of the primitive operations / and \: the Pl postulates have a bias
for left branches; for the Pr postulates only right branches are accessible.
We highlight some properties of this package.

Linearity The postulates rearrange a structural configuration; they cannot du-
plicate or waste grammatical material.

Control The postulates operate under ¢ control. Because the logic doesn’t
allow the control features to enter a derivation out of the blue, this means
they have to be lexically anchored.

Locality The window for structural reasoning is strictly local: postulates can
only see two products in construction with each other (with one of the factors
bearing the licensing ¢ feature).

Recursion Non-local effects of structural reasoning arise through recursion.

In comparison with universal package (10), the postulates of (12) represent
a move towards more specific forms of structural reasoning. One can see this in
the deconstruction of Pr2 (similarly, Pi2) as the compilation of a sequence of
structural inferences in (10). The postulate C of (10) is removed from (12) as an
independent structural inference; instead, a restricted use of it is encapsulated
in Pr2 (or Pl2).

(AeB)eOCH(AeOC)e B (Pr2)

Combinator: Pr2 =y~ '(y(Az2) 0o C) o A7

-1
Az

c A
(AeB)eOC + Ae(Be(C)F Ae(¢OCeB) F (AeOC)e B
The careful reader may have noticed that the package (12) is too weak to
allow the derivation of the extraction example in Figure 2. The modalized type

3 The reader should keep in mind that, as a result of the cut rule, it is the pattern to

the left of I- that shows up in the conclusion of the natural deduction inferences we
have given.

10 Michael Moortgat

assignment for the relative pronoun in (11) has (¢Onp\s) as the subtype for
the relative clause body: the ¢$Onp hypothesis is withdrawn to the left. But
this means that complement positions on right branches are inaccessible for the
{Onp gap hypothesis, if we want to stay within the limits of (12). Accessing a
right branch position from the launching point of $UOnp would require the extra
postulate PI3 (and by symmetry Pr3), establishing communication between the
left- and right-biased options. Again, these are forms of structural reasoning
encapsulating a controlled amount of C.

(13) OAe(BeC) - Be(Ce$A) (PI3)?
(AeB)e OC - (OCe A)e B (Pr3)?

dedicated [s: F Onp]® [OF] —fo_ Alice
((np\s)/pp)/np (s1) Fnp VE] pp/np “mp [/E]
Lewis dedicated o (s1) F (np\s)/pp to o Alice - pp /E]
np (dedicated o (s1)) o (to o Alice) - np\s \E]
Lewis o ((dedicated o (s1)) o (too Alice)) |- s (Pr2]
Lewis o ((dedicated o (to o Alice))o (s1)) I s
[q, F ©Onp)? (Lewis o (dedicated o (to o Alice))) o (s1) F s
(Lewis o (dedicated o (to o Alice)))oq, F s i
Lewis o (dedicated o (to o Alice)) - s/ UOnp

Fig. 3. Non-peripheral extraction in terms of the package (12). Compare with
the derivation in Figure 2.

There is a lexical alternative to strengthening the postulate package which
is obtained from a directional variant of the type assignment to the relative
pronoun, with (s/O0Onp) as the subtype for the relative clause body. Under
this alternative, the lexicon assigns two types to ‘which’: one for subject rela-
tivization, one for non-subject cases. See the derivation in Figure 3. Notice the
trade-off here between increasing the size of the lexicon (storage) versus simpli-
fication of the on-line computation (the structural package). Different learners
could make different choices with respect to this trade-off: we do not want to
assume that the solution for the lexicon and the structural module has to be
unique. Individual solutions can count as equally adequate as long as they asso-
ciate the same forms with the same meaning. As we have noticed in §1, meaning
composition is fully determined by the logical introduction/elimination rules for
the type-logical constants modulo directionality (i.e. / and \ are indentified).

The two alternatives above make different choices with respect to the distri-
bution of grammatical complexity over the lexicon and the structural module.
For an example of alternative solutions that are essentially of the same complex-
ity, we refer to the analysis of Dutch verb raising (VR) in [13], where a leftwing

