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Ptjeface

It has been known formanyyearlthﬂ‘b kv
interactions of matter can be formulated ae
Lorentz group SO(3,1) and the eompact ‘internal’ phase group U(1),
respectively. But over the past two decades it has gradually come to be
accepted that the remaining two (known) fundamental interactions of
matter, namely the strong and weak nuclear interactions, are also gauge
interactions, a property that had been hidden by confinement for the strong
interactions and by spontancous symmetry breaking for the weak ones.
To be more precise, it has now been established beyond reasonable doubt
that the weak nuclear interactions combine with eclectromagnetism to
form a gauge interaction based on the compact internal non-abeli:.n group
U(2), and, although the evidence is less direct, it is accepted that .he strong
interactions are gauge interactions based on the compact simpie internal
(colour) group SU(3). By combining these results one sees that the (known)
non-gravitational interactions may be described by a gauge theory based
on a compact internal group with Lic algebra SU(3) x SU(2) x U(1). (The
global group is actually S(U(3) x U(2)) because of certain discrete corre-
lations in the particle classification, chapter 9.)

If the S(U(3) x U(2)) theory of the non-gravitational interactions is
cofrect, it represents an immense advance because gauge theories, by their
nature, determine the form of the interactions, leaving only a finite number
of constants as free parameters, ard thus in principle at least, the form
of all the fundamental interactions is now known. Furthermore, since
gauge theories have a geometrical interpretation in terms of fibre bundies,
it means that even the non-gravitational interactions have a geometrical
significance and are thus brought a step nearer to gravitation.

On the other hand the common gauge structure of all the interactions
does néot mean that the interactions are fully unified, beéause the gravita-
tional interaction has special properties not shared by the others (the
existence of the metric and the equivalence principle, for example) and
the three other interactions remain separate in the sense that the
SU3) x SU(2) x U(1) algebra consists of three irreducible pieces, with
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a separatc coupling constant for each piece. For this reason it has been
“ suggested tha* the gauge group S(U(3) x U(2)) is actually only a subgroup
- of a larger, simple, compact gauge group G, which has only ons coupling

constznt and which truly unifies the three non-gravitational interactions.

Theories based on such groups G are called grand unified theories (GUTs)

and have been extensively studied in recent years. Although the most

spectacular prediction of GUTs, namely proton decay, has not yet been

(and may even never be) observed, therc is a certain amount of indirect

evidence for GUTSs (chapter 10), notably from the particle classification,

from renormalization group considerations and from cosmology.

Compact gauge thcories are, in principle, generalizations of electro-

~magnetism from U(1) to non-abelian groups, but the generalization is not
trivial for two reasons. First, the initiasic group structuie {Lie algebras,
represeniations, invariants, etc.) is niach more compilicated than in the
abelian case. Second, spontaneous symmetry breakiug, which enters only

in the special case of superconductivity for eleciromagnetism, piays a

central role for the non-abelian theories.

The aim of the present monograph is to provide a review of the group
structure both of the non-abelian gauge theories themselves and of their
spontancous symmetry breaking. The presentation is pitched at about the
graduate student level and, so as not to overlap with the many excellent
treattnents of other aspects of gauge theories (reaormalization, phenomen-
ology, confinement, topology, etc.), it concentrates on two aspects. These
are the group theoretical background, particularly the global group theory
(Part I) and the algebraic structure of the gauge interactions and of their
symmetry breakdown patterns (Part IT). The spontaneous symmetry
breaking is treated in some detail (at the classical level) because many
resuits in this area have not previously been available in book form. It
should be stated, however, that the investigation of symmetry breaking
patterns isstill at anearly stage of development and so the results presented
should be regarded as pioneering ones.

The general plan of the monograph may be seen from the list of contents,
but a few remarks may be in order. In chapters 1-5, where the grour-
theorctical background is given, some of the more technical equipment
(tables of branching rules and Clebsch-Gordon coefficients for example)
has been omitted because it is available elsewhere and space did not permit
a reasonable resumé. In the chapters on spontaneous symmetry breaking
(8, 11, 12) it is assumed, for definiteness, that the symmetry breakdown
is caused by a local scalar potential, but it is fairly evident that because
of the group-theoretical nature of the results most of them would survive



Preface ix

in a much broader context, e.g. if the scalar field were composite. Indeed
this is one of the justifications for the group-theoretical approach. With
regard to the references, and the suggestions for further rcading, the
literature on both Lie groups and gauge theory is so vast there was no hope
of providing a comprehensive bibliography, and accordingly these sections
have been limited to those references which are strictly relevant, to recent
reviews (many of whici, notably Langacker (1981). contain extensive lists
of references) and to books.

Finally, I should like to take this opportunity to thank Professors
Nikolas Kuiper (director) and Louis Michel for their kind hospitality at
the Institut des Hautes Etudes Scientifiques, Bures-sur-Y vette, for most of
the academic year 1983-4, when much of the monograpi was written. 1
should also thank Louis Michel, whose influence pervades not only the
book but the whole literature on svmmetry and symmetry breaking, for
many invaluable discassions and cominents.

L. O’RAIFEARTAIGH Dublin, 1655
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1
Global properties of groups and Lie groups

1.1 Groups

Part I of this monograph is concerned mainly with the theory of Lie groups,
which is the background group theory necessary for gauge interactions.
But since some of the relevant properties of Lie groups are common to
many topological groups, and even to groups in general, it is convenient
to begin with a brief discussion of general and topological groups.

First, a group G is defined as a set of elements {g} (not necessarily finite
or even countable) for which there is a multiplication law GxG »G
(2,8,€G for g,, g, € G) with the three properties:

() Associativity, g,(2:£3) = (£,82)8s;
(i) Existence of an identity element e, such that, for each geg,

g =8 =g,
(iii) Existence of an inverse element g7! such that, for each gegG,
glg=gg ' =e

The identity e and the inverse g~! are easily seen to be unique. In physics
and geometry, groups usually occur as transformations which leave some
quantity (or set of quantities) invariant, simply because the product of any
two such transformations also leaves the quantity invariant. In particular,
groups of transformations that leave the Harmltoman or Lagrangian
invariant are called symmetry groups.

An important concept which arises for group transformations is that of
group orbits, which may be defined as follows: let a group G of trans-
formations act on a set of elements {s}. Then the subset of all elements that
can be obtained from any given element s, by the action of G is called the
orbit of s, with respect to G, or the G-orbit of s5,. For example, the orbits
of the rotation group in Euclidean 3-space are the surfaces of the spheres
of radius r for each 0 § r < oo. The group itself is an orbit with respect
to left or right multiplication, and group invariants are trivial (on¢-clement)
orbits. The action of the group on an orbit is transitive (i.c. any element
on an orbit can be obtained from any other one by a group transformation)

3



4 | Global properties of groups and Lie groups

and membership of an orbit is a class relation (se O(s,) = s, ¢ O(s) and
s€ 0(5'), s’ € O(s") = s€ O(s”)). Thus any set on which a group acts can be
partitioned into distinct group orbits.

The set of elements z that commute with all other group elements
(zg = gz all geG) is called the centre Z of G, and it includes at least the
identity e. If all elements commute (Z = G) the group is called abelian.

A subgroup H of a group G is a subset of {4} of elements of G which
closes with respect to the multiplication already defined by G (hke H for
h, k € H) and which contains the inverse of each of its elements A, and the
identity e. Subgroups usually arise by making a natural restriction of the
original group, ¢.g. restricting the group of rotations in three dimensions

to rotations about one axis, or to discrete rotations.

"~ One of the most important group operations is conjugation. The
conjugation of one element g by another 4 is the transformation g - hgh~!.
The conjugation of the group G by a single element 4 is the transformation
g—+hgh™ for all geG and it preserves the group multipjication since
g8’ +h(gg) h~* = (hgh*) (hg’h). The set of elements obtained by the
conjugation of a fixed element 4 by the whole of G, ghg! for all g€ G, is
called the conjugation class of h, and, since the class is a group orbit, a
group can be partitioned into distinct conjugacy classes. For example, for
the permutation group of three objects (in standard notation), the
conjugacy classes are {(1), (2), (3)} {(12), (13), (23)} and {(123), (132)}. Since
geg™! = ¢, the identity clement forms a separate conjugacy class, and more
generally, a given element forms a separate conjugacy class if, and only
if, it lies in the centre Z. In physical or geometrical situations the elements
of a conjugacy class usually have some obvious physical or geometrical
characteristic in common. For example, for the rotation group all rotations
of the same magnitude (but in different directions) are in the same
conjugacy class.

An invariant subgroup H of G is one which is invariant with respect to
conjugation with G, i.e. ghg=*e H for all ke H, ge G. For example, the
translation subgroups of the space-time groups are invariant subgroups
because they are transformed into themselves by rotations.

To each subgroup H of a group G is associated its right (left) cosets,
where the cosets are the G-orbits of H with respect to right (left)
multiplication. In other words, g, and g, are in the same right (left) coset
if, and only if, there exists an element 4 of H such that g, = g, 4 (hg,).
From the properties of orbits it follows that the group may be
partitioned into distinct cosets, and because g, = hg,<>h =g, g;*! and
883" = ee> g, = g, the dimension of each coset, including H itself, is the
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same. For finite groups the equidimensionality of the cosets implies that
dim G/dim H = integer (= number of cosets) and thus gives a limitation
on the number of subgroups. In geometrical or physical situations the
cosets are often parametrized in a direct geometrical or physical manner.
For example, for fixed mass, the cosets of the rotation subgroup SO(3) of
the Lorentz group SO(3, 1) are often parametrized by the 3-momentum p.

In general the left and right cosets of a subgroup H are not identical.
If they are, and if h and g are any elements of H and G respectively, then
gh = h’g for some k'€ H and thus ghg™! = A, which is just the condition
that H be an invariant subgroup. Conversely, if ghg™* = h'e HforallgeG,
he H, then gh = h'g. Thus the necessary and sufficient condition for the
left and right cosets of a subgroup to be the same is that the subgroup be
invariant.

When H is an invariant subgroup the cosets ¢ themselves form a group,
called the quatient group @ = G/H. For the quotient group the identity
element is H itself and the multiplication is that induced by G, i.e. c¢’ = ¢”
where gec, g'ec’ and ¢” contains gg’. Note that invariance of H is
necessary for the consistency of this scheme. The quotient group is not a
subgroup of G, nor is it, in general, isomorphic to a subgroup of G. An
interesting example from physics is the Heisenberg group of real upper
triangular 3 x 3 matrices:

I a m
H(a,ﬂ,m):(() 1 ﬂ) » (1.1)
0 01

The subgroup @ = # = 0 is an invariant (even central) subgroup, and the
quotient group is the two-dimensional translation group

nens(} $)< (s 4)

But the quotient group is not a subgroup of H(a,B,m) and both the
invariant subgroup and the quotient group are abelian although H(a, 8, m)
itselfis not. ' :

A mapping of a group onto itself (g—g'(g) e G) which preserves the
multiplication law is called an automorphism of the group. For example,
for the group of unitary unimodular complex n x n matrices SU(n), n > 2,
complex conjugation is an automorphism, but hermitian conjugation is not
because it reverses the order of multiplication. It has been seen already that
the conjugation of a group by a fixed element preserves the multiplication
law. Thus conjugation with any element is ‘an automorphism, and any
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6 Global properties of groups and Lie groups

automorphism that can be implemented by a conjugation is called an inner
automorphism. Thus complex conjugation M — M* is inner for SU(2) since
M* = CMC-! where Me SU(2) and C = (_? 1)e SU(2), but is not inner
for SU(n), n>3 because for n >3 there are elements such that
tr M 3 tr M* and for such elements M and M* cannot be conjugate. The
sets of all automorphisms (Aut(G)) and of all inner automorphisms
(Int(G)) of a group G are themselves groups.

A map from a group G onto (or indeed into) another group G’ such that
the multiplication law is preserved is called a homomorphism of G, and
G’ is called the homomorphic image. The set of elements of G which map
onto the identity element ¢’ of G’ is called the kernel of the homomorphism.
For example, the rotation group SO(3) in three dimensions is a homo-
morphic image of the Euclidean group E(3) (rotations and translations)
with the translation subgroup of E(3) as the kernel. It is not difficult to see
that the kernel of a homomorphism G -~ G’ must be an invariant subgroup
of G. If the homomorphism between G and G’ is one-one the two groups
are said to be isomorphic.

A direct product G = A x B of two groups A and B is a group whose
clements are g = (a, b) for all ae A, be B and whose multiplication law is
gg’ = (aa’,bb’). A somewhat more subtle structure is that of a semi-direct
product. A fairly familiar occurrence of this structure is in the case of the
Euclidean group E(3) and its various crystallographic (finite) subgroups,
all of which are semi-direct products of rotation groups R and translation
groups T. That means that each element g of the group can be expressed
asg = (r, ) where ris a rotation and t is a translation and the multiplication
law is gg’ = (r,8) (', ') = (rr’, t+rt’) where rt’ denotes the translation ¢
rotated by r. Note that the rotations affect the translations but not vice
versa. The generalization of this law for a semi-direct product 4 A B of
any two groups A and Bis g = (a, b) where a and b are elements of 4 and
B and gg’' = (a, b) (@', b') = (ad’, bh(a)b’) where the transformations
"~ b h(a) b are automorphisms of B, i.e. (h(a)b) (h(a)b’) = h(a) bb’ and are
homomorphisms (representations) of A, i.e. h(aa’) b = h(a) (k(a’) b). This
multiplication law satisfies the associativity condition g(g’g”) = (g'g)g”
(exercise 1.1), a result which is evident in the special case that the
automorphisms are inner, i.e. cach ae 4 has an image ba) in B and
h(a) b = b(a) bb~'(a). The subgroup B = (1, B) of a semi-direct product
A A Bis evidently an invariant subgroup, and the quotient group G/8 is
isomorphic to 4. Conversley a group G with an invariant subgroup # is
isomorphic to a semi-direct product (G/B) A Bif the quotient group G/B
is isomorphic to a subgroup of G. An interesting example of a semi-direct

’



1.2 Topological groups 7

product for compact Lie groups is the semi-direct product W A H of
the Weyl group W and the Cartan group H (section 2.3). This group is the
normalizer of the Cartan algebra, i.e. it is the maximal subgroup of
the compact Lie group which conjugates the Cartan algebra into intself.

1.2 Topological groups

When the clements of a group are not denumerable it is often desirable
to have a notion of continuity, and so a topology is introduced. A
topological group is defined to be a group with any topology in which the
multiplication and inversion are continuous. That is to say, if g and 4 are
in the neighbourhood of g’ and 4’ respectively, in the given topology, then
gh and g™ are in the neighbourhood of g’h’ and (g’)"!. In practice, a
topology is often suggested by the context in which the group is considered.
Thus, for example, a natural topology for a group of real matrices is the
usual topology of the real line for the matrix elements.

The most important topological concept that will be needed is that of
compactness. It will be recalled that a topological space is compact if every
covering (set of open sets containing every point) has a finite subcovering.
In particular, for a space whose topology is induced by a metric,
compactness is equivalent to the statement that the space is closed and
bounded with respect to that metric. A much weaker, but very important
form of compactness is Jocal compactness, and a topological space is said
to be locally compact if every neighbourhood of a point contains a
compact subneighbourhood. Lie groups, which are locally Euclidean, are
locally compact but not necessarily compact.

One of the first uses of a topology is to define the connectivity structure
of a group. Two elements g and 4 are said to be connected, if for a real
parameter 0 € ¢ < 1 there exists in G a continuous path g(r) with g(0) = g
and g(1) = h. The connectedness of elements is a class relation and hence
a topological group may be partitioned into disjoint self~connected
components. The component G, containing the identity element ¢ is called
the identity component. For example, the group O(n) of real orthogona!
n x n matrices, O%(n) O(n) = 1, where ¢ denotes transpose, consists of two
disconnected components det O(n) = 1and det O(n) = — 1, the first, called
SO(n), being the identity component.

In the O(n) example onc sees that the identity component is an
invariant -subgroup (det N =1 impliecs det NK =1 for detK=1 and
det MNMf‘. =1 for det M = +1), and it turns out that this result is
completely genetal: the identity component of any topological group is an
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invariant subgroup. The proof is quite straightforward. First, the connected
component forms a subgroup because, if g and h are connected to e (by
£(#) and h(1)), then gh is connected to e (by g(t) h(?)). Second, the subgroup
is invariant because, for g connected to e and any k € G, kgk~! is connected
to e (by kg(t) k™).

The other components are the cosets of G, because for g, 4 in the same
component (connected to each other by k(¢) say) g~h is in the connected
component (connected to e by g~'k(s)). Thus the components form a
discrete quotient group D = G/G,. In many cases the group G is actually
a direct or semi-direct product of the form D x G, or D A G,. For example
for the orthogonal groups, O(2n+1) is a direct product of the form
Z,% S50(2n+1) where Z, is the two-element group 41, and OQn) is 2
semi-direct product of the form Z, A SO(2n) where Z, is the two-clement
group diag(l,1,...,1,1, +1). However, G is not always a direct or
semi-direct product, even for compact groups. For compact Lie groups a
complete analysis of the disconnected structure has been given by de
Siebentahl (1956).

A connected group is said to be simply commected if each closed
continuous curve g(f) (0 < 1 < 1, g(0) = g(1)) in it may be continuously
deformed to zero (by a family of such curves g(1,5),0 < s < 1 g(¢,0) = g(1),
g(t,1) = e). (For those familiar with homotopy theory (Nash and Sen,
1983) simple connectivity <> m,(G) = 0.) For example the 1 + I dimensional
Lorentz group e*, —o0 < x < oo is simply connected, but the rotation
group e, 0 < ¢ < 2# is not. For Lie groups, simple connectivity will be
~ discussed in more detail in section 1.4. Another important use of a
topology is to construct a measure x(g) on the group. A measure is
desirable because it allows the concept of summing over the elements for
finite groups to be generalized to integration for continuous groups. For
this reason the measure is required to be invariant with respect to group
multiplication (either left or right). That is, it is required to satisfy the
relation

[auto)teh = [auarsie (1.2)

(and similarly for left multiplication) for every continuous function f{g)
of compact support. A sufficient condition for the exisience of such a
measure is that the group be locally compact (Weil, 1953), in which case
the measure is called Haar measure and is unique up to a constant. For
abelian groups, the left and right Haar measures are the same, and for the
Euclidean translation groups it is just the Lebesgue measure. Similarly, for
the Heisenberg group (1.1) both measures are just the Euclidean measure
da df dm, and for the general real linear group GL(n, ) both measures are
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(det M)~ T1dm,,;, where m,; are the matrix elements of M. However, for
the real triangular matrix group (§° %), the left and right measures are
different, being exp(—a)dadbdx and exp(—b)dadbdx respectively.
Since Lie groups are locally compact they always have invariant measures,
and an explicit construction will be given in section 2.2.

In the non-abelian case a simple criterion for the left and right Haar
measures to be the same is the following: let x(g) be a left-invariant
measure. Then, for any fixed element k, u(gk) is also a left-invariant
measure, and hence, by the uniqueness, u(gk) = A(k) u(g) where A(k) is a
positive factor, called the modular factor. Then

Idﬂ(g)ﬂxk") = jdﬂ@k)ﬂg) = A(k) J du(@) g), (1.3)

and so u(g) is right-invariant if, and only if, the modular factor is a
constant.

Compact groups have the special property that the continuous functions
of compact support include 6(g) = 1. Using 6 for /in (1.3) one sees at once
that A(k) = 1 and thus for compact groups the left and right measures are
the same. Furthermore, since

| e = [a0) < . (L4)

the total measure for compact groups is finite. This is probably the most
important property of compact groups and one of its consuquences is that
the representation theory of compact groups is similar to that of finite
groups (chapter 5).

It is often useful to have a left- (right)-invariant metric p(g, h) = p(kg, kh)
and a necessary and sufficient condition for this is that the topology have
a countable basis. It is necessary because any metrically induced topology
has such a basis (e.g. the spheres p(g, g) < rationals) and is sufficient
because of a theorem due to Birkhoff and Takhutani (see Barut and Raczka
1977). Since Lie groups are locally Euclidean (section 1.3) they satisfy this
condition, and the metric will be constructed explicitly in section 2.2.

For compact groups, in particular compact Lie groups, there exjst
metrics which are both left- and right-invariant. In fact, for compact
groups any measurable metriccan be convertedinto a left- or right-invariant
one by averaging with the Haar measure. Thus, in particular, if p(f; g) is
a left-invariant metric,

Af8) = jdm) p(fh,gh), (1.5)

is again a metric, and is both left- and right-invariant.
Finally it should be mentioned that by subgroups of topological, in
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particular Lie, groups will be meant closed subgroups. where closed means
closed in the topology of the original group. ~ ‘or example, the
subgroups obtained by restricting the continuous pas uiaieters of Lie groups
to the raticnals are excluded.

1.3 Lie groups: global considerations

After the above digression into general and topological groups let us
consider Lic groups. These ar¢ groups for which the topology is locally
Euclidean. That is, in the neighbourhood of any point the group may be
parametrized by a finite number of continuous (real) variabies. Thus
g = gla,, ... a,), where the a;, k = 1, ..., are continuous and, by conven-
iion, e = g(0,0, ...,0). In general the ‘rigid" groups of theoretical physics,
e.g. the rotaiion groups, Lorentz group, groups of unitary transformations
on finite-din ensional spaces etc. are Lie groups, while the more ‘flexiblc’
groups such as the group of ali coordinate transformations in general
relativity, local gauge groups, and the group of all canonical transform-
ations in classical point mechanics are not Lie groups because the number
of parameters is not finite. The archetypal Lie group is an n x n matrix
group, with continuous elements, and indeed it can be shown that every
Lie group is isomorphic to a matrix group (at least in the neighbourhood
of the identity). Thus it is usefu! to keep the continuous matrix groups in
mind as concrete realizations of Lie groups. Some important examples of
continuous matrix groups which are Lie groups are:

(1) GL(n, c¢/r) = group of all complex/real non-singular n x n matrices
M.

(2) SL(n,c/r) = group of all complex/real unimodular n x n matrices M
(det M =1).

(3) D(n, ¢/r{u) = group of all complex/real/uni.ary diagonal non-
singular n x n matrices. '

(4) T(n, c/r) = group of all complex/real upper-triangular non-singular
B X 11 matrices. )

(5) Ty(n,c/r)=group of all complex/real upper-triangular unit-
diagonal n x n matrices.

(6) U(n) = group of all complex unitary 7 x n matrices.

(7) SU(n) = group of all complex unitary unimodular n x n matrices.

(8) O(n, c/r) = group of all complex/real orthogonal n x n matrices.

(%) &9(n, c/r) = group of all unimodular complex/real orthogonal n x n
matrices.



