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Preface

The development of a systematic theory of optimization since the mid-
1950s has not been followed by widespread application to the design and
control problems of the process industries. This surprising and disap-
pointing fact is largely a consequence of the absence of effective com muni-
cation between theorists and process engineers, for the latter typically do
not have sufficient mathematical training to look past the sophistication
with which optimization theory is usually presented and recognize the
practical significance of the results. This book is an attempt to present a
logical development of optimization theory at an elementary mathematical
level, with applications to simple but typical process design and control
situations. ,

The book follows rather closely a course in optimization which I .
have taught at the University of Delaware since 1965 to classes made up
of graduate students and extension students from local industry, together
with some seniors. Approximately half of the students each year have
been chemical engineers, with the remainder made up of other types of
engineers, statisticians, and computer scientists. The only formal
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mathematical prerequisites are a familiarity with caleulus through
Taylor series and a first course in ordinary differentisl equations, together
with the maturity and problem awareness expected of students at this
level. In two sections of Chapter 3 and in Chapter 11 a familiarity with
partial differential equations is helpful but not essential. With this back-
ground it is possible to proceed in one semester from the basic elements of
optimization to an introduction to that current research which is of direct
process significance. The book deviates from the course in containing
more material of an advanced nature than can be reasonably covered in
one semester, and in that sense it may be looked upon as comprising in
part a research monograph.

Chapter 1 presents the essential features of the variational approach
within the limited context of problems in which only one or a finite num-
ber of discrete variables is required for optimization. Some of this
material is familiar, and a number of interesting control and design
problems can be so formulated. Chapter 2 is concerned with the parallel
variational development of methods of numerical computation for such
problems. The approach of Chapter 1 is then resumed in Chapters 3
to 5, where the scope of physical systems analyzed is gradually expanded
to include processes described by several differential equations with
magnitude limits on the decisions which can be made for optimization.
The optimal control of a flow reactor is a typical situation.

In Chapters 6 and 7 much of the preceding work is reexamined and
unified in the context of the construction of Green’s functions for linear
systems. It is only here that the Pontryagin minimum principle, which
dominates modern optimization literature, is first introduced in its com-
plete form and carefully related to the more elementary and classical
material which is sufficient for most applications.

Chapter 8 relates the results of optimization theory to problems of
design of practical feedback control systems for lumped multivariable
processes.

Chapter 9 is an extension of the variational development of prin-
ciples of numerical computation first considered in Chapter 2 to the more
complex situations now being studied. !

Chapters 10 and 11 are coneerned with both the theoretical develop-
ment and numerical computation for two extensions of process signifi-
cance. The former deals with complex structures involving reeycle and
bypass streams and with periodic operation, while the latter treats
distributed-parameter systems. Optimization in periodically operated
and distributed-parameter systems represents major pertinent efforts of
current research.

Chapter 12 is an introduction to dynamic programming and
Hamilton-Jacobi theory, with particular attention to the essential
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equivalence in most situations between this alternate approach and the
variational approach to optimization taken throughout the remainder
of the book. Chapter 12 can be studied at any time after the first half
of Chapters 6 and 7, as can any of the last five chapters, except that
Chapter 9 must precede Chapters 10 and 11. A

Problems appear at the end of each chapter. Some supplement the
theoretical developments, while others present further applications.

In part for reasons of space and in part to maintain a gonsistent
mathematical level I have omitted any discussion of such advanced
topics as the existence of optimal solutions, the Kuhn-Tucker theorem,
the control-theory topics of observability and controllability, and
optimization under uncertainty. I have deliberately refrained from
using matrix notation in the developments as a result of my experience
in teaching this material; for I have found that the very conciseness
afforded by matrix notation masks the significance of the manipulations
being performed for many students, even those with an adequate back-
ground in linear algebra. For this reason the analysis in several chapters
is limited to two-variable processes, where every term can be conveniently
written out. ’

In preparing this book I have incurred many debts to colleagues and
students. None will be discharged by simple acknowledgement, but
some must be explicitly mentioned. My teacher, Rutherford Aris, first
introduced me to problems in optimization and collaborated in the
development of Green’s functions as the unifying approach to variational
problems. J. R. Ferron, R. D. Gray, Jr., G. E. O’Connor, A. K. Wagle,
and particularly J. M. Douglas have been most helpful in furthering my
understanding and have permitted me to use the results of our joint
efforts. The calculations in Chapter 2 and many of those in Chapter 9
were carried out by D. H. McCoy, those in Section 10.8 by G. E. O’Con-
nor, and Figures 6.1 to 6.4 were kindly supplied by A. W. Pollock. My
handwritten manuscript was expertly typed by Mrs. Frances Phillips.
For permission to use copyrighted material I am grateful to my several
coauthors and to the following authors and publishers:

The American Chemical Society for Figures 4.2, 5.7, 5.8, 9.1, 9.2, 9.7 to
9.13, 10.5 to 10.15, 11.8 to 11.12, which appeared in Industrial and
Engineering Chemastry Monthly and Fundamentals Quarterly.

Taylor and Franecis, Ltd., for Figures 11.1 to'11.7 and Sections 11.2 to
11.7, a paraphrase of material which appeared in International
Journal of Control.

R. Aris, J. M. Douglas, E. S. Lee, and Pergamon Press for Figures 5.9,
5.15, 9.3, and Table 9.8, which appeared in Chemical Engineering
Science.
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D. D. Perlmutter and the American Institute of Chemical Engineers for
Figures 8.1 and 8.2, which appeared in AICRE Journal.

Several of my colleagues at the University of Delaware have shaped
my thinking over the years about both optimization and pedagogy, and
it is my hope that their contributions to this book will be obvious at least
to them. J. M. Douglas and D. D. Perlmutter have kindly read the
entire manuscript and made numerous helpful suggestions for improve-
ment. For the decision not to follow many other suggestions from
students and colleagues and for the overall style, accuracy, and selectlon
of material, I must, of course, bear the final responsibility.

MorToN M. DENN
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Introduction

OPTIMIZATION AND ENGINEERING PRACTICE

The optimal design and control of systems and industrial processes has
long been of concern to the applied scientist and engineer, and, indeed,
might be taken as a definition of the function and goal of engineering.
The practical attainment of an optimum design is generally a conse-
quence of a combination of mathematical analysis, empirical information,
and the subjective experience of the scientist and engineer. In the chap-
ters to follow we shall examine in detail the principles whieh underlie the
formulation and resolution of the practical problems of the analysis and
specification of optimal process units and control systems. Some of these
results lend themselves to immediate application, while others provide
helpful insight into the considerations which must enter into the specifi-
cation and operation of a working system.

The formulation of a process or control system design is a trial-
and-error procedure, in which estimates are made first and then infor-
mation is sought from the system to determine improvements. When &
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sufficient mathematical characterization of the system is available, the
effect of changes about a preliminary design may be obtained analyti-
cally, for the perturbation techniques so common in modern applied
mathematics and engineering analysis have their foundation in linear
analysis, despite the nonlinearity of the system being analyzed. Whether
mathematical or experimental or a judicious combination of both, pertur-
bation analysis lies at the heart of modern engineering practice.

Mathematical optimization techniques have as their goal the devel-
opment of rigorous procedures for the attainment of an optimum in a
system which can be characterized mathematically. The mathematical
characterization may be partial or complete, approximate or exact,
empirical or theoretical. Similarly, the resulting optimum may be a
final implementable design or a guide to practical design and a criterion
by which practical designs are to be judged. In either case, the optimi-
zation techniques should serve as an important part of the total effort in
the design of the units, structure, and control of a practical system.

Several approaches can be taken to the development of mathemati-
cal methods of optimization, all of which lead to essentially equivalent
results. We shall adopt here the variational method, for since it is
grounded in the analysis of small perturbations, it is the procedure which
lies closest to the usual engineering experience. The general approach is
one of assuming that a preliminary specification has been made and then
enquiring about the effect of small changes. If the specification is in fact
the optimum, any change must result in poorer performance and the pre-
cise mathematical statement of this fact leads to necessary conditions, or
equations which define the optimum. Similarly, the analysis of the effect
of small perturbations about a nonoptimal specification leads to compu-
tational procedures which produce a better specification. Thus, unlike
most approaches to optimization, the variational method leads rather
simply to both necessary conditions and computational algorithms by
an identical approach and, furthermore, provides a logical framework for
studying optimization in new classes of systems.

BIBLIOGRAPHICAL NOTES .
An ouistanding treatment of the logic of engineering design may bé found in -

D. F. Rudd and C. C. Watson: “Strategy of Process Engineering,” John Wiley &
Sons, Inc., New York, 1968 -

Mathematical simulation and the formulation of system models is discussed in '

A. E. Rogers and T. W. Connolly: “Analog Computation in Engineering Design,”
McGraw-Hill Book Company, New York, 1960

R. G. E. Franks: “Mathematical Modeling in Chemical Engineering,”” John Wiley &
Sons, Inc., New York, 1967 -
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Perturbation methods for nonlinear systems are treated in such books as

W. F. Ames: “Nonlinear Ordinary Differential Equations in Transport: Processes,”’
Academic Press, Inc.,, New York, 1968

: “Nonlinear Partlal Differential Equations in Engineering,”’ Academlc Press,
Inc New York, 1965

R.E. Bellman “Perturbation Techniques in Mathematics, Physics, and Engmeermg,”
Holt, Rinehart and Winston, Inc., New York, 1964

W. J. Cunningham: “Introduction to Nonlinear Analysis,” McGraw-Hill Book
Company, New York, 1958

N. Minorsky: ‘“Nonlinear Oscillations,” D. Van Nostrand Company, Inc., Princeton,
N.J., 1962

Perhaps the most pertinent perturbation method from a system analysis viewpoint, the
Newton- Raphson method, which we shall consider in detail in Chaps. 2 and 9, is
discussed in

R. E. Bellman and R. E. Kalaba: “Quasilinearization and Nonlinear Boundary
Value Problems,” American Elsevier Publishing Company, New York, 1965
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Optimization with leferentlal
Calculus

1.1 INTRODUCTION

A large number of interesting optimization problems can be formulated
in such a way that they can be solved by application of differential calcu-
lus, and for this reason alone it-is well to begin a book on optimization
with an examination of the usefulness of this familiar tool. We have a
further motivation, however, in that all variational methods may be con-
sidered to be straightforward extensions of the methods of differential
calculus. Thus, this first chapter provides the groundwork and basic
prineiples for the entire book.

1.2 THE SIMPLEST PROBLEM

The simplest optimization problem which can be treated by calculus is the
following: &(x1,Z2, . . . ,Za) is a function of the n variables z1, 25, . . .,
z,. Find the particular values Z;, &3, . . . , £, which cause the function
& to take on its minimum value. ; K

't
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We shall solve this problem in several ways. Let us note first that
the minimum has the property that

8(131,.’)32, PPN ,x,,) - 8(.’2],.’1_;2,' « . ,2-?,.) Z 0 (1)

Suppose that we let z; = %, + ér,, where éz, is a small number in abso-
lute value, while 22 = %3, x3 = %5, . . . , Tn = &a. If we divide Eq. (1)
by éx1, we obtain, depending upon the algebraic sign of éz;,

8(F1 4 8x1, Fo, . . . , &) — 8(E1, T2, . . . ,Tn) >0 21>0 (2a)
0z - - !
or )
8(.’51 + 511, .’z'z, e ,:l-',.) - 8(1-1,52, “ o a ,:En) < 0 62?'1 < 0 <2b)
0xy ' -

The limit of the left-hand side as 6z; — 0 is simply 88/8z,, evaluated at
%y, %2 . . ., Za. From the mequahty (2a) this partial derivative is
nonnegative, while from (2b) it is nonpositive, and both inequalities are
satisfied only if 96/9z; vanishes. In an identical way we find for all z;,
k=1,2 ...,n,

a8

7 @
at the minimizing values #;, &5, . . . , £,.. We thus have n algebraic
equations to solve for the » unknowns, %, s, . . . , &,.

It is instructive to examine the problem somewhat more carefully
to search for potential difficulties. We have, for example, made a rather
strong assumption in passing from inequalities (2a) and (2b) to Eq. (3),.
namely, that the partial derivative in Eq. (3) exists at the values zy,

Z2 . . ., Zs. Consider, for example, the flmctlon ) .
8(1:1:3“2! C ) = ,zl, + ,le + - '7 . Ixnl (4)
which has a minimum at z; =z, = - - - = z,,= 0. Inequalities (1)

and (2) are satisfied, but the partial derivatives in Eq.(3) are-not defined
at 2 = 0. If we assume that one-sided derivatives of the.function &
exist everywhere, we must modify condition (3) to -

lim 98 <0 (5a)
ok~ 0%k

a8 )
Jn o g

with Eq. (3) implied if the derivative is continuous.
In problems which describe real situations, we shall often find that
physical or economic interpretations restrict the range of variables we



