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Preface

This book is devoted to two separate, but related, toplcs (1) the syhthesis and
simplification of switching and logic circuits, and (2) the theory of Boolean algebras.

Those people whose primary interest is in switching and logic circuits can read
Chapter 4 immediately ‘after a quick perusal of Chapter 1. We have confined our
treatment of switching and logic circuits to combinational circuits, i.e. circuits in
which the outputs at a given time depend only on the present value of the inputs and
not upon the previous values of the inputs. The extensive theory of sequential circuits,
in which the outputs depend also upon the history of the inputs, may be pursued by -
the reader in Introduction to Switching Theory and Logical Design by F. J. Hill and
G. R. Peterson (reference 34, page 202), Introduction to Switching and Automata
Theory by M. A. Harrison (ref. 33, page 202), and other textbaoks on switching theory.

The treatment of Boolean algebras is somewhat deeper than in most elementary -
texts. It can serve as an introduction to graduate-level books such as Boolean Algebras
by R. Sikorski (ref. 148, page 207) and Lectures on Boolean Algebras by P. R. Ha]mos
(ref. 116, page 207). )

There is no prerequisite for the readmg of this book. Each chapter begms with
clear statements of pertinent definitions, principles and theorems together with. illus-
trative and other descriptive material. This is followed by graded sets of solved and
supplementary problems. The solved problems serve to illustrate and amplify the-

. theory, bring into sharp focus those fine points without which the student contmually

feels himself on unsafe groum)i nnd provide the repetition of basic principles so vital
to effective learning. A few problems which involve modern algebra or point-set
topology are clearly labeled. The supplementary problems serve as a complete review
of the material of each chapter. Difficult problems are identified by a superscript ?
following the problem number. | '

The extensive bibliography at the end of the book is divided into two parts, the .
first on Switching Circuits, Logic Circuits and Minimization, and the second on .
Boolean Algebras and Related Topics. It was designed for browsing. We have listed *

- many articles and books not explicitly referred to in the body of the text in order to

give the reader the opportunity to delve further into the literature on his own.

Queens College ELLIOTT MENDELSON
July 1970 ’
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Chapter 1

The Algebra of Logic

1.1 TRUTH-FUNCTIONAL OPERATIONS

There are many ways of operating on propositions to form new propogitions. We shall
limit ourselves to those operations on propositions which are most relevant to mathematics
and science, namely, to truth-functional operations. An operation is said to be truth-
functional if the truth value (truth or falsity) ef the resulting proposition is determined
by the truth values of the propositions from which it is constructed. The investigation of
truth-functional operations is called the propositional calculus, or, in old-fashloned
terminology, the algebra of logic, although its subject matter forms only a small and
atypically simple branch of modern mathematlcal logie. .

’

Negation

Negation is the simplest common example of a truth-functional operation. 'If A is a
proposition, then its denial, not-A, is true when A is false and false when A is true. We shall
use a special sign 71 to stand for negation. Thus, 71 A is the proposition which asserts the
denial of A. The relation between the truth values of TA and A can be made explicit by a
diagram called a truth table.

Fig.1-1

In this truth table, the column under A gives the two possible truth values T (truth)
‘and F (falsity) of A. Each entry in the column under "iA gives the truth value of TA
corresponding to the truth value of A in the same row.

Conjunction

Another truth-functional operation about which httle dnscussmn i8 necessary is con-
junction. We shall use A & B to stand for the conjunctlon (A and B) The truth table

for & is

Al B | A&SB
T T T
F|T F
T|F F
F|F F
Fig.1-2
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There are four possible asmgnmen{s of truth values to A and B. Hence there are four rows
in the truth table The only row in which A & B has the value T is the first row, where each
of A and B is true

Disjunction

The use of the word “or” in English is ambiguous. Sometimes, “A or B”t means that
at least one of A and B is trye, but that both A and B may be true. This is the inclusive
usage of “or”. Thus to explain someone’s success one might say “he is very smart or he
is very lucky”, and this clearly does not exclude the possibility that he is both smdrt and

~lucky The inclusive usage of “or” is often rendered in legal documents by the expression

“and/or”.

. Sometimes the word “or” is used in an exclusive sense. For example, “Either I will go

skatmg this afternoon or I will stay at home to study this afternoon” clearly. means that I
will not both go skatmg and stay home to study this afternoon. Whether the exclusive usage
is intended by the speaker or is merely inferred by the listener is often difficult to determine
from the sentence itself.
.. In any case, the ambiguity in usage of the word “or” is something that we cannot allow
in a language intended for $cientific applications. It is necessary to employ distinet symbols
for the different meanings of “or”, and it turns out to be more convenient to introduce
a special symbol for the inclusive usage, since this occurs more frequently in mathematical
assertions.tt

“A\ B” shall stand for “A or B or both”. Thus in its truth table (Fig. 1-3) the only case
where A B is false is‘the case where both A and B are false. The expressron Av B will be
called a disjunction (of A and B).

A 8 AvB
T |'T T
F T T
T F T
F F F
Fig.1-3

Conditionals

In mathematics, expressions of the form “If A then B” occur so often that it is necessary
to understand the corresponding truth-functional operation. It is obvious that, when A is T
and B is F, “If A then B” must be F. But in natural languages (like English) there is no
established usage in the other cases (when A is F, or when both A and B are T). In fact
when the meanings of A and B are not related (such as in “If the price of milk is 25¢ per
quart, then high tide is at 8:00 P.M. today”), the expression “If A then B” is not regarded
as having any meaning at all.

‘mtnctly speaking, we should employ quotation marks whenever we are talking about an expression
rather than using it. However, this would sometimes get the reader lost in a sea of quotation marks,
and we adopt instead the practice of omitting quotatlon marks whenever misunderstanding is improbable.

ttIn some natural languages, there are different words for the inclusive and exclusive “or”. For example,
in Latin, “vel” is used in the inclusive sense, while “aut” is used in the exclusive sense.
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Thus if we wish to regard “If A then B” as truth-functional (i.e. the truth value must
be determined by those of A and B), we shall have to go beyond ordinary usage. To this
end we first introduce = as a symbol for the new operatice. Thus we shall write “A - B”
instead of “If A then B”. A — B is called a conditional with antecedent A and consequent B.
The truth table for - contains so far only one entry, in the third row.

l A\_-,'

CECROUITR
ooy S|

Fig. 1-4

As a guideline for deciding how to fill in the rest of the truth table, we can turn to
“If (C & D) then €”, which seems to be a proposition which should always be true.  When
CisTandDis F, (C & D) is F. Thus the second line of our truth table should be 'F (since
(C&D)is F, Cis T, and (If (C & D) then €) is T). Likewise when € is F' and D is F, °
(C & D) is F. Hence the fourth line should be T. Finally, when € is T and D is T, (C &b
is T, and the first line should be T. We arrive at the following truth table:

A l B l A-B
T T T
F T T
T F " F
F F T

- Fig.1-5

A - B is F when and only when A is T and B is F.

To make the meaning of A - B somewhat clearer, notice that A-> B and (TA)v B always
have the same truth value. (Just consider each of the four possible assignments of truth
values to A and B.) Thus the intuitive meaning of A > B is “not-A or B”. This is precisely
the meaning which is given to “If A then B” in contemporary mathematics.

A proposition A > B is T whenever A is F, irrespective of the truth value of B. Notice
also that A - B is automatically T whenever B is T, without regard to the truth value of A.
In these two cases, one sometimes says that A~ B is trivially true by virtue of the falsity
of A or the truth of B. .

Example 1.1.

The propositions 2+2 =5 > 11 and 2+2=5 - 1 =1 are both trivially true, since 2+2=5§
is false. -

Biconditionals

At this time we shall introduce a special symbol- for. just one more truth-functional
operation: A if and only if B. Let A « B stand for “A if and only if B”, where we under-
stand the latter expression to mean that A and B have the same truth value (i.e. if Ais T,
so is B, and vice versa). This gives rise to the truth table:
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Al| s | A©B
T T T
F|T F
T | F F
FIlIF T
Fig.1-6

A proposition of the form A & B is called a biconditional. Notice that A & B always takes
the same truth value as (A~ B) & (B~ A); this is reflected in the mathematical practice of
deriving a biconditional A < B by proving A - B and B - A separately.

12 CONNECTIVES

Up to this point, we have selected five truth-functional operations and introduced special
symbols for them: 7, &, v,~, &. Of course if we limit ourselves only to two variables,
then there are 2¢ =16 dlfferent truth-functional operations. With two varlables, a truth
table has four rows: .

-

Fig.1-7

A truth-functional operation éan have either T or F in each row. Hence there are 2:2+2-2
possible binary truth-functlonal operations.

Corresponding to any truth- functional operatlon (i.e. to any truth table) we can mtroduce
a special symbol, called a connective, to indicate that operation. Thus the symbols
1, &, v, >, & are connectives. These five connectives will suffice for all practical purposes.

Example 1.2.

The operation corresponding to the exclusive usage of “or” could be designated by a connective +,
having as its truth table:

Al B] A+B
T T F
FIT T
T | F T
_F | F F
Fig.1-8

1.3 STATEMENT FORMS
To study the properties of truth-functional operations we introduce the following notions.

By a statement form (in the connectives 1, &, v, 2, «>) we mean any expression built
up from the statement letters A, B, C, ..., Ay, By, Cy, ... by a finite number of applications
of the connectives 1, &, v, >, o. More precmely, an expression is a statement form if it
can shown to be one by means of the following two rules:



CHAP. 1] THE ALGEBRA OF LOGIC 5

(1) All statement Ietters (with or without posxtlve integral subscripts) are statement
forms.

(2) If A and B are statement fokns, so are (T1A), (A&B), (AvB), (A>B), and (Ao B).t

Example 1.3.
Examples of statement forms:
i) A->(Bv(C&(N14); (i) (A (ABY)); (iii) (N(V42) > (42> 4y)).

Clearly we can talk aboﬁt statement forms in any given set of connectives (instead of ~
just 71, &, v, >. &) by using the given connectives in clause (2) of the definition.

14 PARENTHESES

The need for parentheses in writing statement forms seems obvious. An expression '
such as A v B & C might mean either ((Ay B) & C) or (A v (B & C)), and these two statemept
forms are not, in any sense, eqmvalent :

Whlle parentheses are necessary, there are many cases in which some parentheses may
be convemently and unambiguously omitted. For that purpose, we adopt the following
conventions for omission of parentheses.

(1) Every statement form other than a statement letter has an outer pair of parentheses.
We may omit this outer pair without any danger of ambiguity. Thus instead of
((AvB) & (1 C)), we write (Av B) & (10).

(2) We omit the pair of parentheses around a denial ("TA). Thus instead of (1 4) v C, we
write 1A v C. This cannot be confused with (A v C), since the parentheses will not
be dropped from the latter. As another example consider (A & B) v ("1 (71 (1 B))). This
becomes (A& B)v T11B.

3) For any binary connective, we adopt the principle of association to the left. For
e¢xample, A & B & C will stand for (A& B) & C, and A > B - C will stand for (A~ B)~> C.

Example 1.4.

Applying (1)-(3) above, the statement forms in the column on the left below are reduced to the equiva-
lent expressions on the right.

(1A &) v (T4)) 1A &C)v 14
((Av (B)) & (C&(14))) (Av 1B) & (C& 14)
((Av (IB) &C) & (14)) . AvIB)&C& 14

(M) > (B~ (A v YY) 1A - (B-> 1AV Q)

More far-reaching conventions for omitting parentheses are presented in Appendix A.
In addition, Appendix B contains a method of rewrltmg statement forms so that no
parentheses are required at all.

tAn even more rigorous definition is: B is a statement form if and only if there is a fmite.sequence A, ...,
A, such that

(1) A, is B;

(2) if 1=14=n, then either A; is a statement letter or there exist j,k < i such that A; is (TA))
or A; is (A; & Ay) or A; is (AjVv Ay) or A; is (A; > Ay) or A; is (A; <> Ay).
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15 TRUTH TABLES

Every statement form A defines a truth-function: for every assignment of truth values
to the statement letters in A, we can calculate the corresponding truth value of A itself.
This calculation can be exhibited by means of a truth table.

Example 1.5.
The statement form (1A v B) € A has the truth table

A | B|14] 14AvB | (1AvB)© A

T T F T T

F T T T

T F F F F

F F T T F
Fig.1-9 "

Each row corresponds to an assignment of truth values to the statement letters. The columns give the
corresponding truth values for the statement forms occurring in the step-by-step construction of the
given statement form. ’

Example 1.6. . o . -
The statement form (A v (B & C)) » B has the truth table
' B B&C | Av(B&O) | Av(B&C)-B

T T

S

CICRURE RIS RSN PN
R
Mg g 33 3 H|AQ
oo o E S
R EEER
e NN R REC RS

Fig.1-10

When there are three statement letters, notice that the truth table has eight rows. In
general, when there are n statement letters, there are 2” rows in the truth table, since
there are two possibilities, T or F, for each statement letter.

Abbreviated Truth Tables

By the principal connective of a $tatement form (other than a statement letter), we mean
the last connective used in the construction of the statement form. For example, (Av B) > C
has > as its principal connective, A v (B ~ C) has v as its principal conneccive, and (4 v B)
has 71 as its principal connective.

There is a way of abbreviating truth tables so as to make the computations shorter:
We just write down the given statement form once, and, instead of devoting a separate
column to each statement form forming a part of the given statement form, we write the
truth value of every such part under the principal connective of that part.

 Example 1.7.

Abbreviated truth table for (T4 v B) €> A. We begin with Fig. 1-11. Notice that each occurrence
of a statement letter requires a repetition of the truth assignment for that letter.
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(HAv B &4
T T

F T

T F -

F F

I

Fig.1-11

Then the negation is handled:
(14 v B) &

FroT
TF T
FT F
TF F

L - I

followed by the disjunction
(1A v B) &

FTTT
TFTT
FTFF
TFTF

oo e

O

and, finally, the biconditional
(1A v. B) &

FTTT T
TFTT F
FTFF F
TFTF F

o3 g K1

Of course our use of four separate diagrams was only for the sake of illustration. In practice all the
work can be carried out in one diagram.

1.6 TAUTOLOGIES AND CONTRADICTIONS

A statement form A is said to be a tautology if it takes the value T for all assignments
of truth values to its statement letters. Clearly A is a tautology if and only if the column
under A in its truth table contains only T’s.

Example 1.8. A — A is a tautology.

AlA->A
T| 7T

F T
Fig.1-12

Example 19. Av 14 is a tautology.
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Example 1.10. (Av B) & (Bv A)v is a tautology.
A|B| AvB-{"BvA | (AvB)© (BvA)

T | T T T T

F|T T T T

T | F T T T

F |F F F T
Fig. 1-14

Example 1.11. [A&(BVv ()] © [(A&B)v (A &(C)] is a tautology.t

V"

A
A| B|C | BvC | A&BvC) | A&B | A&C | (A&BV(A&C) | A
T| T| T T T T T T T
F{T|T T F F F F T
T F T T T ¥ T T T
F|F|T T F F F F T
T| T | F T T T F T T
F|T|F T F F F F T
T| F|F F F F F F T
F|{ F| F F F S F F T
Fig.1-15

Theorem 1.1. If K is a tautology, and statement forms A, B, C, ... are substituted for the
statement letters 4, B, C, ... of K (the same statement form replacing all
occurrences of a statement letter), then the resulting statement form K# is
a tautology.

Example 1.12.

(Av B) © (Bv A) is a tautology. Replace A by (Bv C) and simultaneously feplace B by A. The
new statement form [(BvCO)vA]l & [A v (Bv Q)] is a tautology.

Proof of Theorem 1.1. K determines a truth-function f(4, B, C, ...) which always takes
the value T no matter what the truth values of 4, B, C, ... may be. Let g1, 92, g2, ... be the
truth-functions determined by A,B,C,.... Then the truth-function determined by K*
must have the form ¥ = f(gi(...), g2(...), gs(...), . ..), and, since f always takes the value
T, f* also always takes the value T. )

A contradiction is a statement form which always takes the value F. Hence A is a
contradiction if and only if TA is a tautology, and A is a tautology if and only if TAis a
contradiction.

Esample 1.13. A & 1A is a contradiction.

A |14 LA&'M

T ¥ .F

F T F
Fig.1-16

tIn writing this statement form, we have replaced some parentheses by brackets to improve legibility.
For the same purpose, we also shall use braces.
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Example 1.14. A © 1A is a contradiction.
A]14 | A4

T F F
F T F

Fig. 1-17

Example 1.15. (Av B) & 1A & 1B is a contradiction.
A | B | AvB | 1A|1B | (AvB)& 14 | (AvB) & 14 & 1B
T F F

o om oo

T
F
F

H o om
R I B
L B B B

T T
T F
F T

Fig.1-18

1.7 LOGICAL IMPLICATION AND EQUIVALENCE

We say that a statement form A logically implies a statement form B if and only if every
assignment of truth values making A true also makes B true.

Example 1.16. A logically implies A.
Example 1.17. A logically implies A v B, For, whenever A.is true, A v B also must be true,

»
Example 1.18. A & B logically implies A.

Theorem 1.2. A logically implies B if and only if A>Bisa tautology.

Proof. A logically implies B if and only if, whenever A is true, B must also be true.
Therefore A logically implies B if and only if it is never the case that A is true and B is
false. But the latter assertion means that A - B is never false, i.e. that A > B is a tautology. p

Since we can effectively determine by a truth table whether a given statement form is a
tautology, Theorem 1.2 provides us with an effective procedure for checking whether A
logically implies B. ‘

Example 1.19. Show that (4 -> B) — 4 logically implies A.
Proof. Fig. 1-19 shows that ((4 » B) > 4) » A is a tautology.

A | B | A->B | (A>B)»A | (A>B)~>A4)>A

T T T T T

F 1 T T F ‘T

T F F T T

F F T F T
Fig. 1-19

Statement forms A and B are called logically equivalent if and only if A and B always
take the same truth value for any truth assignment to the statement letters. Clearly this
means that A and B have the same entries in the last column of their truth tables.
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Example 1.20. A <> B is logically equivalent to (4 - B) & (B - A).
A|B| A©B | A»B | B>A | (A>B)&(B-4)

T| T T T T T
F|T F T F F
T | F F F T F
F | F T T T T

4 }
Fig.1-20

_Theorem 1.3. A and B are logically equivalent if and only if A « B is a tautology.

Proof. A < B is T when and only when A and B have the same truth value. Hence
A o B is a tautology (i.e. always takes the value T) if and only if A and B always have the
same truth value (i.e. are logically equivalent). )

Example 1.21. A4 - (B - C) is'logically equivalent to (A& B)~> C. -
Proof. [A - (B~ C)] © [(A &B) - C] is a tautology as shown in Fig. 1-21,

[(A &B) - ()

A|B|C| B>C|A>B-C)|A&B | (A&B)~>C | [A~» (B> ()<
T|r]|T T T - T T T
F|T|T T T F T T
T|F]| T T T F T T
FlF|T T T F T T
T|T|{F F F T . F T
F|T]|F F T F T T
T|{F|F T T F T T
FIFIF T T F T T
Fig.1-21.

Corollary 14. If A and B are logically equivalent and we replace statement letters in A
and B by statement forms (all occurrences of the same statement letter heing
replaced in both A and B by the same statement form), then the resulting
statement forms are also logically equivalent.

Proof. This is a direct consequence of Theorems 1.3 and 1.1. p

Example 1.22.

A->(B-C) and (A &B)— C are logically equivalent. Hence so are '(Cv A)-» (B> (Av B)) and
((Cv A) & B) » (Av B) (and, in general, so are A—>(B—>C) and (A&B)—>C for any statement forms
A, B, C). . '

Theorem 1.5 (Replacement). If B and C are logically equivalent and if, within a statement
form A, we replace one or more occurrences of B by €, then the resulting
statement form A% is logically equivalent to A.

Proof. In the calculation of the truth values of A and A%, the distinction between B
and € is unimportant, since B and € always take the same truth value. p

Example 1.23. . .
Let A be (Av'B)—>C. Since A v B is logically equivalent to Bv 4, A is logically equivalent to
(Bv A) -~ C. ’ .
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The following examples of logically equivalent pairs of statement forms will be extremely
useful in the rest of this book, for the purpose of finding, for a given statement form,
logically equivalent statement forms which are simpler or have a particularly revealing
structure. We leave verification of their logical equivalence as an-exercise.

Example 1.24. 717Aand A (Law of Double Negation)
Example 1.25. (a) A& A and A 14 :
(b)) Av A and A (Idempotence)
Example 1.26. (a) A&B and B&A o
(5 AvB and Bv A (Commutat‘wnt))
Example 127. (a) (A&B)&C and AL W&S) ,
! (Associativity)

b) (AvB)v e nnd AV(DVC)

As a result of the assoclative laws, we can leave out parentheses in con]unctions or dis-

junctions, if we do not distinguish between logically equivalent statément forms. For -

example, A v B v C v D stands for ({4 v B) v C) v D, but the statement forms (A v (Bv C)) v D
v((BvC)yvD), (AvB)v(CvD) and A v (B\(Cv D)) are loglcally equivalent to it.

Terminology: In A;v Azv ::- v A, the statement forms A; are called disjuncts, whlle'
in A& A & ... & A, the stateix;@t_, forms A, are called donjuncts.
Example 1.28. De Morgan’s Laws. '
(a) 1(Avl) and 1A & 18
(b) 1(A&l) ‘and 1AV 1B

~ Example 1.29. Dlstnbutwe Laws (pr Factormg-out Laws).
(a) A& (BvC) and (A&B)v (A&C)
() Av (B&C) and (AVvB) &(AVvC)

Notice that there is a distributive law in arithmetic: a- (6 + cy==4@>D) + (a*¢); but
the other distributive law, a + (b-c) = (a+b)-(a+c) is false. (Take a=b=c=1.).

Example 1.30. Absorption Laws.
(I) (a) Av(A&B) and A
(b) A&Z(AVB) and A

() (2) (A&B)v 1B and Ay 1B
(®) (AvB)& 1B and A & 18

(III) If T is a tautology and F is a contradiction,
(¢) (T&A) and A~ (¢) (F&A) and F
() (TVA). and T (d) (FvA) and A

We shall often have occasion to use the logical equivalence between (A & 71B) v B and
A\ B, and between (Av 1B) & B and A & B. We shall justify this by reference to Example
1.30(II), since it amounts to substituting 1B for B in Example 1.830(II) and then uamg
Example 1.24.

Example 1.31. A-B and 18- 1A (Contr#pqsitive)

Example 1.32. Elimination of conditionals.
(¢) A-»B and AV B
(b) A>B and 1(A& 1B)



