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Preface to the First Edition

Mathematics has always benefited from its involvement with developing sciences.
Each successive interaction revitalises and enhances the field. Biomedical science
is clearly the premier science of the foreseeable future. For the continuing health
of their subject mathematicians must become involved with biology. With the
example of how mathematics has benefited from and influenced physics, it is
clear that if mathematicians do not become involved in the biosciences they will
simply not be a part of what are likely to be the most important and exciting
scientific discoveries of all time.

Mathematical biology is a fast growing, well recognised, albeit not clearly
defined, subject and is, to my mind, the most exciting modern application of
mathematics. The increasing use of mathematics in biology is inevitable as biol-
ogy becomes more quantitative. The complexity of the biological sciences makes
interdisciplinary involvement essential. For the mathematician, biology opens up
new and exciting branches while for the biologist mathematical modelling offers -
another research tool commmensurate with a new powerful laboratory technique
but only if used appropriately and its limitations recognised. However, the use of
esoteric mathematics arrogantly applied to biological problems by mathemati-
cians who know little about the real biology, together with unsubstantiated claims
as to how important such theories are, does little to promote the interdisciplinary
involvement which is so essential.

Mathematical biology research, to be useful and interesting, must be relevant
biologically. The best models show how a process works and then predict what
may follow. If these are not already obvious to the biologists and the predictions
turn out to be right, then you will have the biologists’ attention. Suggestions as
to what the governing mechanims are, may evolve from this. Genuine interdis-
ciplinary research and the use of models can produce exciting results, many of
which are described in this book.

No previous knowledge of biology is assumed of the reader. With each topic
discussed I give a brief description of the biological background sufficient to
understand the models studied. Although stochastic models are important, to
keep the book within reasonable bounds, I deal exclusively with deterministic
models. The book provides a toolkit of modelling techniques with numerous
examples drawn from population ecology, reaction kinetics, biological oscillators,
developmental biology, evolution, epidemiology and other areas.
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The emphasis throughout the book is on the practical application of math-
ematical models in helping to unravel the underlying mechanisms involved in
the biological processes. The book also illustrates some of the pitfalls of indis-
criminate, naive or uninformed use of models. I hope the reader will acquire a
practical and realistic view of biological modelling and the mathematical tech-
niques needed to get approximate quantitative solutions and will thereby realise
the importance of relating the models and results to the real biological problems
under study. If the use of a model stimulates experiments — even if the model
is subsequently shown to be wrong - then it has been successful. Models can
provide biological insight and be very useful in summarizing, interpreting and
interpolating real data. I hope the reader will also learn that (certainly at this
stage) there is usually no ‘right’ model: producing similar temporal or spatial
patterns to those experimentally observed is only a first step and does not imply
the model mechanism is the one which applies. Mathematical descriptions are
not explanations. Mathematics can never provide the complete solution to a bi-
ological problem on its own. Modern biology is certainly not at the stage where
it is appropriate for mathematicians to try to construct comprehensive theories.
A close collaboration with biologists is needed for realism, stimulation and help
in modifying the model mechanisms to reflect the biology more accurately.

Although this book is titled mathematical biology it is not, and could not be,
a definitive all-encompassing text. The immense breadth of the field necessitates
a restricted choice of topics. Some of the models have been deliberately kept
simple for pedagogical purposes. The exclusion of a particular topic — population
genetics for example — in no way reflects my view as to its importance. However,
I hope the range of topics discussed will show how exciting intercollaborative
research can be and how significant a role mathematics can play. The main
purpose of the book is to present some of the basic and, to a large extent, generally
accepted theoretical frameworks for a variety of biological models. The material
presented does not purport to be the latest developments in the various fields,
many of which are constantly developing. The already lengthy list of references
is by no means exhaustive and I apologise for the exclusion of many that should
be included in a definitive list. B

With the specimen models discussed and the philosophy which pervades the
book the reader should be in a position to tackle the modelling of genuinely
practical problems with realism. From a mathematical point of view, the art
of good modelling relies on: (i) a sound understanding and appreciation of the
biological problem; (ii) a realistic mathematical representation of the important
biological phenomena; (iii) finding useful solutions, preferably quantitative; and
what is crucially important (iv) a biological interpretation of the mathematical
results in terms of insights and predictions. The mathematics is dictated by
the biology and not vice-versa. Sometimes the mathematics can be very simple.
Useful mathematical biology research is not judged by mathematical standards
but by different and no less demanding ones.

The book is suitable for physical science courses at various levels. The level
of mathematics needed in collaborative biomedical research varies from the very
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simple to the sophisticated. Selected chapters have been used for applied math-
ematics courses in the University of Qxford at the final year undergraduate and
first year graduate levels. In the U.S.A.the material has also been used for courses
for students from the second year undergraduate level through graduate level.
It is also accessible to the more theoretically orientated bioscientists who have
some knowledge of calculus and differential equations.

I would like to express my gratitude to the many colleagues around the
world who have, over the past few years, commented on various chapters of
the manuscript, made valuable suggestions and kindly provided me with pho-
tographs. I would particularly like to thank Drs. Philip Maini, David Lane and
Diana Woodward and my present graduate students who read various drafts with
such care, specifically Daniel Bentil, Meghan Burke, David Crawford, Michael
Jenkins, Mark Lewis, Gwen Littlewort, Mary Myerscough, Katherine Rogers and
Louisa Shaw.

Oxford, January 1989 J. D. Murray



If the Lord Almighty had consulted me
before embarking on creation I should have
recommended something simpler
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Table of Contents

1. Continuous Population Models for Single Species

1.1 Continuous Growth Models .
1.2 Insect Outbreak Model: Spruce Budworm .
1.3  Delay Models .
1.4 Linear Analysis of Delay Populatxon Models Penodlc Solutxons
1.5 Delay Models in Physiology: Dynamic Diseases .
1.6 Harvesting a Single Natural Population .
*1.7 Population Model with Age Distribution
Exercises

2. Discrete Population Models for a Single Species

2.1 Introduction: Simple Models .

2.2 Cobwebbing: A Graphical Procedure of Solutlon
2.3 Discrete Logistic Model: Chaos . .
2.4 Stability, Periodic Solutions and Blfurca.txons
2.5 Discrete Delay Models

2.6 Fishery Management Model

2.7 Ecological Implications and Caveats

Exercises

* Denotes sections in which the mathematics is at a higher level. These sections can

3. Continuous Models for Interacting Populations

3.1 Predator-Prey Models: Lotka- Volterra Systems .

3.2 Complexity and Stability . .

3.3 Realistic Predator-Prey Models . .

3.4 Analysis of a Predator-Prey Model with lext Cycle Perxodlc
Behaviour: Parameter Domains of Stability .

3.5 Competition Models: Principle of Competitive Exclusmn .

3.6 Mutualism or Symbiosis . .

3.7 General Models and Some General and bautxonary Remarl\s

3.8 Threshold Phenomena .

Exercises

be omitted without loss of continuity.

36

36
38
41
47
51
54
37
39

63

63
68
70

72
78
83
85
89
92



X Table of Contents

4. Discrete Growth Models for Interacting Populations

4.1 Predator-Prey Models: Detailed Analysis

*4.2  Synchronized Insect Emergence: 13 Year Locusts
4.3 Biological Pest Control: General Remarks .
Exercises .

5. Reaction Kinetics

5.1 Enzyme Kinetics: Basic Enzyme Reaction .

5.2 Michaelis-Menten Theory: Detailed Analy51s and the
Pseudo-Steady State Hypothesis

5.3 Cooperative Phenomena .

5.4 Autocatalysis, Activation and Inhlbltxon

5.5 Multiple Steady States, Mushrooms and Isolas .

Exercises L

6. Biological Oscillators and Switches

6.1 Motivation, History and Background .

6.2 Feedback Control Mechanisms . .

6.3 Oscillations and Switches Involving Two or More Spec1es
General Qualitative Results .

6.4 Simple Two-Species Oscillators: Pa.rameter Domam
Determination for Oscillations

6.3 Hodgkin-Huxley Theory of Nerve Membranes
FitzHugh-Nagumo Model .

6.6 Modelling the Control of Testosterone Secretlon

Exercises

7. Belousov-Zhabotinskii Reaction .

7.1

7.2 Linear Stability Analysis of the FN Model and Existence
of Limit Cycle Solutions . . . e
7.3 Non-local Stability of the FN Model
7.4 Relaxation Oscillators: Approximation for the
Belousov-Zhabotinskii Reaction . .
7.5 Analysis of a Relaxation Model for lelt Cycle Oscxlla.t.lons
in the Belousov-Zhabotinskii Reaction L
Exercises

Belousov Reaction and the Field- Noyes (FN) \/Iodel

8. Perturbed and Coupled Oscillators and Black Holes

8.1
8.2
8.3
8.4
8.5

Phase Resetting in Oscillators

Phase Resetting Curves

Black Holes . .

Black Holes in Real Blologlcal Oscxllators .
Coupled Oscillators: Motivation and Model System

95

96
100
106
107

109
109

111

- 118

122
130
137
140

140
143

148

156

161
166
175

179
179

183
187

190

192
199

200

200
204
208
210
215



10.

11.

12.

Table of Contents

*8.6 Singular Perturbation Analysis: Preliminary Transformation
*8.7 Singular Perturbation Analysis: Transformed System
*8.8 Singular perturbation Analysis: Two-Time Expansion
*8.9 Analysis of the Phase Shift Equation and Application
to Coupled Belousov-Zhabotinskii Reactions .
Exercises

Reaction Diffusion, Chemotaxis and Non-local Mechanisms
9.1 Simple Random Walk Derivation of the Diffusion Equation .
9.2 Reaction Diffusion Equations . e e e e
9.3 Models for Insect Dispersal .
9.4 Chemotaxis . . .
*9.5 Non-local Effects and Long Ra.nge Dlﬂ'usmn
*9.6 Cell Potential and Energy Approach to Diffusion
Exercises . e

Oscillator Generated Wave Phenomena and Central Pattern
Generators

10.1 Kinematic Waves in the Belousov-Zhabotinskii Reaction
10.2 Central Pattern Generator: Experimental Facts in the
Swimming of Fish
*10.3 Mathematical Model for the Central Pattem Genera.tor
*10.4 Analysis of the Phase-Coupled Model System
Exercises

Biological Waves: Single Species Models

11.1 Background and the Travelling Wave Form .
11.2 Fisher Equation and Propagating Wave Solutions .
11.3 Asymptotic Solution and Stability of Wavefront Solutxons
of the Fisher Equation
11.4 Density-Dependent Diffusion Reactlon Dxffusxon Models
and Some Exact Solutions .
11.5 Waves in Models with Multi- Steady Sta.te Kmetlcs
The Spread and Control of an Insect Population
11.6 Calcium Waves on Amphibian Eggs: Activation Waves
onMedakaEggs
Exercises .

Biological Waves: Multi-species Reaction Diffusion Models .

12.1 Intuitive Expectations . .
12.2 Waves of Pursuit and Evasnon in Predator-Prey Systems .
12.3 Travelling Fronts in the Belousov-Zhabotinskii Reaction
12.4 Waves in Excitable Media

X1

217
220
223

227
231

232

232
236
238
241
244
249
252

254
254

258
261
268
273

274

274
277

281

297

305
309

311

311
315
322
328



XII Table of Contents

12.5 Travelling Wave Trains in Reaction Diffusion Systems

with Oscillatory Kinetics . . . ... 336

*12.6 Linear Stability of Wave Train Solutlons of /\ -w Systems ... 340
12.7 Spiral Waves . . ... 343
*12.8 Spiral Wave Solutlons of A—w R.ea.ctlon Dlﬂ'usnon Systems . . . 350
Exercises e e e e e e e .. . . . 356

*13. Travelling Waves in Reaction Diffusion Systems with

Weak Diffusion: Analytical Techniques and Results . . . . . . 360
*13.1 Reaction Diffusion System with Limit Cycle Kinetics and
Weak Diffusion: Model and Transformed System . . . . . . 360
*13.2 Singular Perturbation Analysis: The Phase Satisfies
Burgers’ Equation . . . . 363

*13.3 Travelling Wavetrain Solutlons for Rea.ctlon lefusxon Systems
with Limit Cycle Kinetics and Weak Diffusion: Comparison
with Experiment . . . . . . . . . . . . . ... .. . 367

14. Spatial Pattern Formation with R.eaction/ Population Interaction

Diffusion Mechanisms . . . . S ¥ 04
14.1 Role of Pattern in Developmental onlogy Ot ¥
14.2 Reaction Diffusion (Turing) Mechanisms . . .. 375
14.3 Linear Stability Analysis and Evolution of Spa.txal Pattem

General Conditions for Diffusion-Driven Instability . . . . . 380
14.4 Detailed Analysis of Pattern Initiation in a Reaction Diffusion

Mechanism . . . 387
14.5 Dispersion Relation, Turmg Space, Scale a.nd Geometry Effects

in Pattern Formation in Morphogenetic Models . . . . . . 397
14.6 Mode Selection and the Dispersion Relation . . . . . . . . 408
14.7 Pattern Generation with Single Species Models:

Spatial Heterogeneity with the Spruce Budworm Model . . . 414

14.8 Spatial Patterns in Scalar Population Interaction-Reaction
Diffusion Equations with Convection: Ecological Control

Strategies . . . ... 419

*14.9 Nonexistence of Spatlal Patterns in Reactlon lefusmn
Systems: General and Particular Results . . . . . . . . . 424
Exercises U R 1

15. Animal Coat Patterns and Other Practical Applications
of Reaction Diffusion Mechanisms . . . . . 435
15.1 Mammalian Coat Patterns - ‘How the Leopard Got Its Spots . 436
15.2 A Pattern Formation Mechanism for Butterfly Wing Patterns . 448
15.3 Modelling Hair Patterns in 2 Whorl in Acetabularia . . . . . 468



17.

18.

19.

Table of Contents

. Neural Models of Patiern Formation . .

16.1 Spatial Patterning in Neural Firing with a Slmple
Activation-Inhibition Model

16.2 A Mechanism for Stripe Formation in the Vlsual Cortex

16.3 A Model for the Brain Mechanism Underlymg Visual
Hallucination Patterns . . . .

16.4 Neural Activity Model for Shell Patterns

Exercises

Mechanical Models for Generating Pattern and Form
in Development

17.1 Introduction and Background Blology
17.2 Mechanical Model for Mesenchymal Morphogene51s

17.3 Linear Analysis, Dispersion Relation and Pattern Formation

Potential .

17.4 Simple Mecha.mcal Models thch Generate Spa.txal Pattems

with Complex Dispersion Relations
17.5 Periodic Patterns of Feather Germs
17.6 Cartilage Condensations in Limb Morphogenesw
17.7 Mechanochemical Model for the Epidermis
17.8 Travelling Wave Solutions of the Cytogel Model
17.9 Formation of Microvilli .
17.10 Other Apphca.t.lons of Mechauochemlca.l Models
Exercises

Evolution and Developmental Programmes

18.1 Evolution and Morphogenesis .

18.2 Evolution and Morphogenetic Rules in Ca.rtllage Formatlon

in the Vertebrate Limb . . . . . . .
18.3 Developmental Constraints, Morphogenetlc Rules and
the Consequences for Evolution . . . ..

Epidemic Models and the Dynamics of Infectious Diseases .

19.1 Simple Epidemic Models and Practical Applications .
19.2 Modelling Venereal Diseases .
19.3 Multi-group Model for Gonorrhea a.nd Its Contro]

19.4 AIDS: Modelling the Transmission Dynamics of the Human

Immunodeficiency Virus (HIV)

19.5 Modelling the Population Dynamics of Acqu1red Immumty

to Parasite Infection .
*19.6 Age Dependent Epidemic Model a.nd Thmhold Cntenon
19.7 Simple Drug Use Epldemlc Model and Threshold Analysm

Exercises

X1t

481

481
489

494
508
523

525

525
528

538

542
554
558
566
572
579
586
590

593
593

599

606

610

611
619
623

624

630
640
645
649



X

20. Geo
20.1

20.2
20.3
20.4
20.5

20.6

Table of Contents

graphic Spread of Epidemics

Simple Model for the Spatial Spread of an Epldemxc

Spread of the Black Death in Europe 1347-1350 . . .
The Spatial Spread of Rabies Among Foxes I: Background
and Simple Model . . . . . . . . . ..

The Spatial Spread of Ra.bles Among Foxes II: Three Spec1es
(SIR) Model . . .- ..
Control Strategy Based on Wa.ve Propaga.tlon mt.o a
Non-epidemic Region: Estimate of Width of a Rabies Barrier
Two-Dimensional Epizootic Fronts and Effects of Variable
Fox Densities: Quantitative Predictions for a Rabies Outbreak
in England e ..

Exercises

Appendices

1.

Phase Plane Ana1y51s .

2.  Routh-Hurwitz Conditions, Jury Condxtlons Desca.rtes Rule
of Signs and Exact Solutions of a Cubic e
3.  Hopf Bifurcation Theorem and Limit Cycles .
4.  General Results for the La.placxa.n Operator in Bounded
Domains
Bibliography

Index

651

651
655

659

666

681

689

696

697
697

702
706

720

723

745



1. Continuous Population Models
for Single Species

The increasing study of realistic mathematical models in ecology (basically the
study of the relation between species and their environment) is a reflection of
their use in helping to understand the dynamic processes involved in such areas
as predator-prey and competition interactions, renewable resource management,
evolution of pesticide resistant strains, ecological control of pests, multi-species
societies, plant-herbivore systems and so on. The continually expanding list
of applications is extensive. There are also interesting and useful applications
of single species models in the biomedical sciences: in Section 1.5 we discuss
two practical examples of these which arise in physiology. Here, and in the
following three chapters, we shall consider some deterministic models. The book
edited by May (1981) gives an overview of theoretical ecology from a variety of
different aspects; experts in diverse fields review their areas. The book by Nisbet
and Gurney (1982) is a comprehensive account of mathematical modelling in
population dynamics: a good elementary introduction is given in the textbook
by Edelstein-IKeshet (1988).

1.1 Continuous Growth Models

Single species models are of relevance to laboratory studies in particular but, in
the real world, can reflect a telescoping of effects which influence the population
dynamics. Let N(t) be the population of the species at time ¢, then the rate of

change )
dN . N

- = births — deaths + migration , (1.1)

is a conservation equation for the population. The form of the various terms

on the right hand side of (1.1) necessitates modelling the situation that we are

concerned with. The simplest model has no migration and the birth and death

terms are proportional to N. That is

dN

=W -dN = N@E)=N elb-d)t

where b, d are positive constants and the initial population N(0) = No. Thus
if & > d the population grows exponentially while if b < d it dies out. This
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approach, due to Malthus in 1798 but actually suggested earlier by Euler, is
pretty unrealistic. However if we consider the past and predicted growth estimates
for the total world population from the 17th to 21st centuries it is perhaps less
unrealistic as seen in the following table.

Date Mid 17th Early 19th 1918-27 1960 1974 1987 1999 2010 2022
Century  Century

Population

in billions 0.5 1 2 3 4 5 6 7 8

In the long run of course there must be some adjustment to such exponential
growth. Verhulst in 1836 proposed that a self-limiting process should operate
when a population becomes too large. He suggested

ﬂ:rN(l—N/K), (1.2)
dt

where r and K are positive constants. This is called logistic growth in a pop-
ulation. In this model the per capita birth rate is r{1 — N/K), that is, it is
dependent on N. The constant K is the carrying capacity of the environment,
which is usually determined by the available sustaining resources.

There are two steady states or equilibrium states for (1.2), namely N = 0
and N = K, that is where dN/dt = 0. N = 0 is unstable since linearization
about it (that is N? is neglected compared with N) gives dN/dt = rN, and
so N grows exponentially from any initial value. The other equilibrium N = K
is stable: linearization about it (that is (V — K)? is neglected compared with
IN — K|) gives d(N — K)/dt = —r(N — K) and so N — K as t — co. The
carrying capacity K determines the size of the stable steady state population
while r is a measure of the rate at which it is reached, that is, it is a measure of
the dynamics: we could incdrporate it in the time by a transformation from ¢ to
rt. Thus 1/r is a representative time scale of the response of the model to any
change in the population.

N{t)
K¥
Nop

K/2¢
Mo Fig. 1.1. Logistic population growth. Note
0 the qualitative difference for the two cases

t  No<K/2and K > No> K/2.
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If N(0) = Ny the solution of (1.2) is

NoKe™

K+ N~ = T (9)

N(t) =

and is illustrated in Fig. 1.1. From (1.2), if No < K, N(t) simply increases
monotonically to K while if Ny > K it decreases monotonically to K. In the
former case there is a qualitative difference depending on whether Np > K/2 or
No < K/2: with Ng < K/2 the form has a typical sigmoid character, which is
commonly observed.

In the case where Ny > K this would imply that the per capita birth rate
is negative! Of course all it is really saying is that in (1.1) the births plus immi-
gration is less than the deaths plus emigration. The point about (1.2) is that it
is more like a metaphor for a class of population models with density dependent
regulatory mechanisms - a kind of compensating effect of overcrowding - and
must not be taken too literally as the equation governing the population dynam-
ics. It is a particularly convenient form to take when seeking qualitative dynamic
behaviour in populations in which N = 0 is an unstable steady state and N(¢)
tends to a finite positive stable steady state. The logistic form will occur in a
variety of different contexts throughout the book.

In general if we consider a population to be governed by

dN
E’ =f(N) ) (1'4)

where typically f(IV) is a nonlinear function of N then the equilibrium solutions
N* are solutions of f(IN) = 0 and are linearly stable to small perturbations if
f(N*) < 0, and unstable if f/(N*) > 0. This is clear from linearizing about N*
by writing

n(t) = N(t) - N*, |n(t)| <1

and (1.4) becomes

T VT )~ SN 40 (N)

which to first order in n(t) gives

%'ti ~nf'(N*) = n(t) o< explf(N*)1]. (1.5)

So n grows or decays according as f'(N*) >0 or F(N*) < 0. The time scale of
the response of the population to a disturbance is of the order of 1 JIf (V) it
is the time to change the initial disturbance by a factor e.

There may be several equilibrium, or steady state populations N* which
are solutions of f(N) = 0: it depends on the system f(/V) models. Graphically
plotting f(IV) against N immediately gives the equilibria. The gradient f'(N*)
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({TI:/ =) f(N) Unstable

Stable

Fig. 1.2. Population dynamics model dN/dt = f(n) with several steady states. The gradient
F/{N) at the steady state, that is where f(N) = 0, determines the linear stability.

at each steady state then determines its linear stability. Such steady states may,
however, be unstable to finite disturbances. Suppose, for example, that f(N)
is as illustrated in Fig. 1.2. The gradients f'(N) at N = 0, N; are positive so
these equilibria are unstable while those at N = N, N3 are stable to small
perturbations: the arrows symbolically indicate stability or instability. If, for
example, we now perturb the population from its equilibrium Nj so that N is
in the range N < N < N3 then N — Nj rather than returning to N;. A
similar perturbation from N3 to a value in the range 0 < N < N3 would result
in N(t) — Nj. Qualitatively there is a threshold perturbation below which the
steady states are always stable, and this threshold depends on the full nonlinear
form of f(N). For Ny, for example, the necessary threshold perturbation is
Na — Ny,

1.2 Insect Outbreak Model: Spruce Budworm

A practical model which exhibits two positive linearly stable steady state pop-
ulations is that for the spruce budworm which can, with ferocious efficiency,
defoliate the balsam fir: it is a major problem in Canada. Ludwig et al. (1978)
considered the budworm population dynamics to be governed by the equation

dN N
———TBN<1—E>—p(N).

Fig. 1.3. Typical functional form of the predation in
the spruce budworm model: note the sigmoid char-
acter. The population value N, is an approximate
threshold value. For N < N, predation is small,
while for N > N, it is “switched on”.




