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PREFACE

Professor Erich Rothe has made significant contributions to various
aspects of nonlinear functional analysis. His early interests were in the field
of parabolic and elliptic partial differential equations. Since then he has
made fundamental contributions to the theory of nonlinear integral equa-

. tions, gradient mappings, and degree theory. His more recent interests have

been in critical point theory and the calculus of variations.

This volume is a collection of articles on nonlinear functional analysis
dedicated to Professor Rothe on the occasion of his eightieth birthday. The
intent of this collection is not to present a complete exposition of any
particular branch of nonlinear analysis, but to provide an overview of some
recent advances in the field.
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Periodic Solutions
of Semilinear Parabolic Equations

Herbert Amann

Ruhr-University

Dedicated to Professor Erich H. Rothe on
the occasion of his 80th birthday.

Introduction

In this paper we use some methods of nonlinear functional analysis, namely
fixed-point theorems in ordered Banach spaces, to prove existence and
multiplicity result for periodic solutions of semllmear parabolic differential
equations of the second order.

The most natural and oldest method for the study of periodic solutions of
differential equations is to find fixed points of the Poincaré operator, that is,
the translation operator along the trajectories, which assigns to every initial
value the value of the solution after one period (e.g., Krasnosel'skii [16]). In
the case of parabolic equations it turns out that the Poincaré operator is
compact in suitable function spaces. Moreover, by involving the strong
maximum principle for linear parabolic equations, it can be shown that it is
strongly increasing in some closed subspace of C2**((}), 0 < v < 1.



2 Herbert Amann

This paper is motivated by some papers of Kolesov [12-14], who has used
essentially the same approach. However, he considered the Poincaré oper-
“ator in the space of continuous functions, and he did not realize that, even in
the case of the general semilinear parabolic equations, this operator is
strongly increasing. This latter fact is the basis for nontrivial existence and
multiplicity results. For simplicity we presént only one multiplicity result,
namely we establish the existence of at least three periodic solutions, given
certain conditions. But having shown that the Poincaré operator is strongly
increasing, it is clear that we can put the problem in the general framework
of nonlinear equations in ordered Banach spaces. Hence, by applying other
general fixed-point theorems for equations of this type (e.g., [3.4,5,15]), it is
possible to obtain further existence and multiplicity results.

We refer to the papers of Kolesov for further references. In addition we
mention a paper by Fife [8], who, by different methods, obtained some exis-
tence theorems for periodic solutions of linear and quasi-linear parabolic
equations. More recently, the work of Fife has been used by Bange [6] and
Gaines and Walter [11] to obtain existence theorems in the case of one space
variable. For further results on periodic solutions of nonlinear parabolic
equations we refer to the references [7,10,20,23,26). These authors use the
theory of monotone operators to deduce existence theorems. However, none
of these papers contains multiplicity results.

In the ‘following section we introduce our hypotheses and present the
main results. In Section 2 we collect some facts on abstract evolution equa-
tions in Banach spaces. Section 3 presents semilinear abstract evolution
equations. It contains the basic a priori estimates, which, for further uses, are
presented in somewhat greater generality than needed in this paper.

In Section 4 we study initial boundary value problems for semilinear
parabolic differential equations. In particular we prove a global existence
theorem (Theorem 4.5), which is of independent interest. In the last para-
graph we establish the basic properties of the Poincaré operator and prove
the existence and mukiplicity results of Section 1.

1. Definitions and Main Results

Throughout this paper all functions are real-valued.

Let X and Y be nonempty sets with X — Y, and let u: X - R and
v: Y — R. Then we write u < v if u(x) < v(x) for every x € X. Ifu < v and
u # v | X, then we write u < v. Ifu > 0, we say that u is positive, and if u > 0,
it is called nonnegative.

We denote by Q a bounded domain in R", whose boundary F is an
(N ~ 1)-dimensional C***-manifold for some p € (0, 1), such that Q lies
locally on one side of I'.

KN4
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Periodic Solutions of Semilinear Parabolic Equations 3

We let
- N N
A(x, t, D)u=~ Y aulx, )D;Du + Y adx, t)D;u + ao(x, t)u,
- i.k=1 i=1
where (x, t) denotes a generic point of Q x R. The coefficients a, a;, a, are
supposed to be u-Holder continuous functions on Q x R, where we use the
metric d((x, t), (¥, s))=(x — y|* + |s — t]|)"2 for the computation of the
Holder constant (that is. ay, a;. a9 € C*"*Q x R)). We assume that
the coefficients of A(x.t, D) are w-periodic in ¢, for some w > 0, that
a, = q,;, and that there exists a positive constant u, such that

N

Y au(x. 1) = po |E P,

ik=1
for (x, 1) e Q x R and ¢ € R". Hence

Cu

Ly = (Pt + A(x, t, D)u
is a uniformly parabolic differential operator in Q x R.

We denote by e C'**(I', R") an outward pointing, nowhere tangent
vector field on I'. Then we let B = B(x, D) be a boundary operator on
I' x R of the form

du
Bu ==b0u + 663,
where either = 0 and b, = 1 (Dirichlet boundary operator), or § = 1 and
by € C'**(T") with by > O (regular oblique derivative boundary operator).
Observe that B is independent of ¢.

Let (x. 1, & n) be a generic point of Q x R¥* % with x € Q and # = (g,
....n") € RY. Then we denote by f: Q x R¥*2 - R a continuous function
which is w-periodic in ¢, such that f(-, -, £ n): & x R— R is u-Holder
continuous, uniformly for (£, ) in bounded subsets of R x R", and such that
f/ot and dfjén’, i =1, ..., N, exist and are continuous on  x R¥*2, Lastly,
we suppose that there exist functions ¢: R, » R, := {0, 0) and
e: R, — (0, 1) such that

[fx 6, &)l < clp)(X + {n P =), (1.1)

forevery p >0and (x, 1. &, n) e Q x R x [—p, p] x RY.
Under the above assumptions we study the existence of w-periodic
solutions of the semilinear parabolic boundary value problem (BVP)

Lu=f(x,t,u,Vu) in QxR
Bu=0 “on T xR (1.2)
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By an w-periodic solution of the BVP (1.2) we mean a function
ue C*1(Q x R), which is w-periodic in ¢, such that Lu(x, t) = f(x, t, u(x, t),
Vu(x, t)) for (x,t)e Q xR and Bu(x,t)=0 for (x,t)e ' x R, where
Vu = (D, u, ..., Dyu)denotes the gradient of u with respect to x. Of course,
u € C* ! means that u is continuously differentiable, twice with respect to x
and once with respect to t. (In fact, it will be shown, that every w-periodic
solution of (1.2) belongs to C2*# 1*#((} x R).)

In the special case that the coefficients of A(x, t, D) are independent of ¢
(in which case we write A(x, D)), we can consider the linear elliptic eigenvalue
problem (EVP)

A(x, D)u = Au in Q,
Bu=0 . on T. (1.3)

It is known (cf. Amann [3, Theorem 1.16]) that this EVP possesses a smallest
eigenvalue i,. Moreover, 4, > 0 if a, > 0 and if, in the case that 6 = |,
ap > 0 for by = 0.

After these preparations we can state an existence and uniqueness theorem
for the linear case.

1.1 THEOREM Let one of the following hypotheses be satisfied:

(i) ao = 0. Moreover, if 6 = 1, then ay > 0 if by = 0.

(i) The coefficients of A(x, t, D) are independent of ¢, and the smallest
eigenvalue of the EVP (1.3) is positive.

Then, for every Holder continuous function w on Q x R, which is
w-periodic in t, the linear BVP

Lu=w in QxR
Bu=0 on I'xR,
has exactly one w-periodic solution u, and u > 0 if w > 0.

A function u is called an w-subsolution for the BVP (1.2) if there exists a
number T = T(u) > w such that ue C>(Q x [0, T]) and

Lu<f(-,.u,Vu) in Qx(0,T),
Bu<o0 on I x (0, T],
u(-, 0) < u(-, w) on Q. (1.4)

It is called a strict w-subsolution if either u(-, 0) < u(-, w) or B(u(-, 0)) < 0.
The notions of w-supersolutions and strict w-supersolutions are defined by
reversing the above inequalities.

An w-subsolution 7 and an w-supersolution » are said to be B-related, if

Fy
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there exists a function we C2*#Q) with Bu=0, such that
o(-, 0) < u < i(+, 0). It can be shown (cf. Remark 5.5) that in the case of the
first BVP (that is, if 6 = 0) every pair of w-sub- and supersolutions o, &
satisfying (-, 0) < (-, 0) are B-related.

After these preparations we are ready for the statement of the main
existence theorem for w-periodic solutions of the semilinear parabolic BVP
(1.2).

12 THeOREM Suppose that © is an w-subsolution and # is an
w-supersolution for the BVP (1.2) such that 7 and i are B-related. Then there
exists at least one w-periodic solution u such that § < u < 7.

More precisely, there exist a minimal w-periodic solution & and a
maximal o-periodic solution # with <@ <a <49, in the sense that
1 < u < u for every w-periodic solution u satisfying & < u < .

In the case of the first BVP the above theorem is due to Kolesov [14] (cf.
also Kolesov [12,13]). In fact, in Kolesov’s theorem the coefficients of L are
allowed to depend on u, and ¢(p) in (1.1) can be equal to zero (cf.
Kolesov [14, Theorems 6 and 7]). _

By combining Theorems 1.1 and 1.2, it is easy to give sufficient conditions

for the existence of w-periodic solutions.

1.3 THEOREM Suppose that there exist nonnegative Holder continuous
functions a and b on  x R, which are w-periodic in ¢, such that

flx,t, & n) < alx, )¢ + b(x, t),
for (x, 1, C.q)eﬂxgkx R, x RN and
flxt,&n) > a(x, t)¢ - b(x, 1), (1.5)

for (x,t, —& n)eQ x R x R, x RY. Moreover, suppose that the operator
L — a satisfies the hypotheses of Theorem 1.1. Then the BVP (1.2) has at
least .one w-periodic solution. :

Proof Theorem 1.1 implies that the BVP

(L—aju=b in QxR
Bu=0 on TxR, (1.6),

has exactly one w-periodic solution 9, and § > 0. Hence & == — p is the unique

" w-periodic solution of the BVP (1.6)_,. It is clear that 7 is an w-subsolution

and ¥ is an ‘w-supersolution which are B-related. Hence the assertion
follows from Theorem 1.2. ®

£7000
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1.4 CoroLLARY Let the hypotheses of Theorem 1.3 be satisfied, but
assume, instead of inequality (1.5), that f(x, ¢, 0, 0) > 0 for (x, t) € Q x R.
Then the BVP (1.2) has at least one nonnegative w-periodic solution.

Proof It suffices to observe that 0 is an w-subsolution and that the
solution & of (1.6), is a nonnegative w-supersolution, which is B-related to
0. e

Corollary 1.4 generalizes considerably the results of Kolesov [14,
Theorem 8], where it had been assumed that 4 =0, and that f is non-
negative and independent of .

In addition to the above existence results we prove the following
multiplicity theorem, which is new, even in the simplest case that f'is only a
function of ¢&. ‘

1.5 THEOREM Suppose that 7, is an w-subsolution, , is a strict
w-supersolution, 7, is a strict w-subsolution, and ¥, is an w-supersolution,
such that each one of the pairs (7,, ¥,) and (7,, ,) is B-related. Moreover,
assume that d,(-,0) <7,(-, 0). Then the BVP (1.2) has at least three
w-periodic solutions u; such that

Uy Suy <uy<uy <b,.
Moreover, 5; <u; < d;for j =1, 2,and &, £ u; £ b,.

It should be remarked that, instead of 9,(-, 0) < 7,(-, 0), it suffices to
assume that 7,(-, 0) < d,(, 0) and (-, 0) £ 9,(, 0).
We close this section with a simple example. Consider the BVP

0
a‘: — Au = 4n” c6s u + ua(x)
N ’ ‘
+¢") afx)costke)(Du)’® in QxR
k=1 .
0
o 0 on I xR,
op
where the functions a and q, are Hdlder continuous on Qand |a| < 1. Then
it is easily verified that the constant functions 7, == —2n, 7, := —nx, 7, =0,

and b, = n satisfy the hypotheses of Theorem 1.2. Hence there exist at least
three 2n-periodic solutions such that —2n < u, <u, < u; < 1.

2. Preliminafies on Linear Evolution Equations

Throughout this paper all vector spaces are over the reals. If 4 is a linear
operator in some Banach space, then we denote by R(4, A4) the resolvent of
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the complexification of A. If X and Y are Banach spaces such that X is
continuously imbedded in Y, then we write X & Y.

Let X be a Banach space and let T be a fixed positive number. Suppose
that

(A1) {A(t) |0 <t < T}is a family of closed densely defined linear oper-
ators in X such that the domain D(A(t)) of A(t) is independent of ¢.

(A2) For each t € [0, T} the resolvent R(4, A(t)) exists for all A with
Re 41 <0, and

[R(A, A@) < (1 + [4])77,
where ¢ is some constant that is independent of 4 and t.

These assumptions imply that A(t) has an inverse 4~ *(t) € L{X), where
L(X) denotes the Banach algebra of bounded linear operators on X. For
abbreviation we write A := 4(0). Then | x ||, == | Ax || defines a norm on D(A4),
which is equivalent to the graph norm. Consequently X, == (D(A), || -||,)isa
Banach space, and X, & X. Moreover, by the closed graph theorem,
A(s)A" (1) € {X) for every s, t € [0, T]. Hence x — || A(s)x|| defines for each
s an equivalent norm on D(A), and A(s) e L(X,, X), that is, A(r) is a
bounded linear operator from X, to X.

Using these notations, we suppose

(A3) The map A("): [0, T] - L(X,, X) is Holder continuous.

In the following we denote by ¢, c(a, ...) generic constants, not necessarily
the same in different formulas, which depend in an increasing way on the
indicated quantities.

Assumptions (A1)-(A3) imply the existence of constants ¢ >0 and
v e (0, 1) such that

H(A4(s) = AN~ @) < els — 2 @)
for s, 1,7 € [0, T]. In fact, it is easily seen that the map t — B(t) = A(tJA™!
is continuous from [0, T] into the group GL(X) of invertible operators in
L{X). Since the map B— B~ is continuous on GL(X), there exists a con-

stant ¢ such that [|[B™'(t)|| = ||[44™!(z)| < c for t € [0, T). Hence the asser-
tion follows from the inequalities

1(A(s) — A4 (@) < [ Als) = A |ex,. 0 |44 ()] < C'S —tf

for s, 1.t € [0, TJ].

Assumptions (A1) and (A2) imply that — A(t) is the infinitesimal gener-
ator of a holomorphic semigroup {e~**® |0 < 1 < o} in L(X). Moreover,
there exist positive constants ¢ and , such that

o= 40 < ce~5 (22)
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and
|A(e)e™ 4O < cx™le™%" (2.3)

fort>0andt€[0, T]
Then inequality (2.2) implies the existénce of the integral

A%t) —F( )J 12 1g7r A0 gy T (24)

for every a > 0. It follows that A~ '(t) = [A(¢)]" !, and each 4A7%(t) is an
injective continuous endomorphism of X. Hence A*(t):=[A%)] 'isa
closed bijective linear operator in X. It can be shown that each A%(t) has
dense domain and that D(4%)) = D(A*(t)) for a > B > 0. Moreover,

AHB(t)x = A%(2)AP(t)x = AP(e)A%(t)x

for every a,fe R and xe D(A'(t)), with yi=max{a, B, a + B}, where
A%(t) = idy . (For proofs of these facts we refer to the literature [9,17,21,24].)

It has been shown by Sobolevskii [24, inequality (1.59)] that D(A4%(s)) =
D(A*(t)) for0<a< B <1lands,te [0, T), and that

|4%(s)A™2(0)] < cle, B) 25)

for s, t € [0, T).

In the following we let | x ||, = || A*x || for x e D(4*) and 0 <« < |, and
we denote by X, the Banach space (D(A"), |-z} Then X; o X, for
0<a<p<1(with Xy=X).

We consider the linear initial value problem (IVP)

uw+Altlu=g(t), O0<t<T,
u(0) = x, ‘ ' (2.6)

with g € C([0, T}, X) and x € X. By a solution u of (2.6) we mean a function
ue C([0, T), X) n CY((0, T}, X) with u(0) = x, u(t) € D(A) for t >0, and
w(t)+ A(tju() =g(t) for0 <t < T.

Our assumptions (cf. inequality (2.1)) imply that the results of
Sobolevskii [24] and Tanabe [25] are applicable_ (cf. also Friedman [10]).
Hence the IVP (2.6) has a unique solution u for every Holder continuous
right-hand side g. Moreover, u € C'([0, T}, X), provided x € D(A).

Sobolevskii and Tanabe have shown that there exists a unique evolution
operator U(t, 1) € I{X),0 < 7 <t < T, such that every solution u of the IVP
(2.6) can be represented in the form

u(t) = U(t, 0)x + .[ U, g() dr, O<t<T. @7)

AF

-,
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The function U is strongly continuous on the closure of the set
A={tt)e[0, TP|0<t<t<T} (that is, U(-)x e C(A, X) for every
x € X) and satisfies U(t, t) = idy, U(s, )U(t, 1) = U(s, 1) for 0 <t <t <
s < T. Moreover, U has an important smoothing property, namely
U(s, )X =« D(A)for0 <t <s<T.

In the following lemma we collect the most important regularity proper-
ties of the evolution operator. For abbreviation we denote the norm in
L(X,, X) by | s

2.1 LemMma (i) Supposethat0 <a < f < 1. Then

[UGt, e s < clo, B y)(E —7)77 (28)
for f—ax<y<land0<t<t<T. Moreover, if0<f <a<l,then
UGt t)]la. < clo B). (29)
(i) Suppose that 0 < a < g < 1. Then
[U(t, 1) = Uls, D)|p.a < clo, B y) |t — s (2.10)

for0<y<p—aand(t, 1) (s, 7) € A.
(iii) Let0<a<1,0<0<T,andge C(o, T}, X). Then

[t <)o) de — [ UGs. oate) de | < el )]s = o max gl

6stsT
(2.11)

for0<y<l-aando<s,t<T.
Proof (i) Suppose that o > 0 and let
0<ée<minfa, 1 = B, (y — B + a)/2}.
Then
U@, Dl < | 4PU( D)4~
< 42478 |42 (OU( DA ()] |4 ()47,

Hence it follows from (2.5) and Sobolevskii [24, inequality (1.65)] (cf. also
Friedman [10, inequality (I1.14.12)]) that '

U, .5 <c(oz )t — T

This implies (2.8).
If o = 0, then the estimate (2.8) follows in a similar way from

1UG )llo.p < 42477 ()]| |47 ()U (e, 7).



