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Preface

In recent years there have been marked changes in
both the style and the content of physics courses at
all levels. The general trend has been towards an
increased emphasis on fundamental principles and
microscopic explanations. As a consequence, the rela-
tive importance attached to various topics has
changed, some new ones have been introduced and
others, such as geometrical optics, virtually elimi-
nated. Another consequence is that less detailed
knowledge of numerous experimental techniques is
now expected; in general, only a familiarity with the
principles of various methods is required. These
changes are reflected in revised syllabuses and call
for a new generation of textbooks. It is in the spirit
of these changes that this book is written.

The area covered corresponds very roughly to the
traditional topics of heat and kinetic theory together
with those parts of properties of matter for which there
are simple explanations in terms of interatomic forces.

In level, the book is intended for use at universities
and technical colleges in physics, engineering,
chemistry or other science courses that require an
elementary knowledge of thermal physics. It can be
used in two ways: either as an introductory text,
setting a firm foundation for further work in more
specialized courses, or as an account, sufficient in
itself for those requiring only a basic knowledge of
the subject. It should also be useful in the science
libraries of school sixth forms as a reference book
that can help to point the way from school physics
to the more mature approach of tertiary study. A
familiarity with elementary calculus is assumed as its
use is essential in the derivation of some of the funda-
mental results. However, when a result may also be
derived without the use of calculus, an alternative
derivation is generally given.

ST units are now essentially universal throughout
science teaching and the text uses the system exclus-
ively. It also generally follows the current recom-
mendations of the Symbols Committee of the Royal
Society as regards conventions for showing physical

quantities and their units, and it incorporates the
modern definitions of temperature scales.

The development of a sensibility towards the nature
and magnitude of physical processes is an essential
part of an education in physics and I consider the
use of quantitative problems and exercises an essen-
tial means to this end. At the end of each chapter I
have assembled a collection of problems. Many are
original and some are inspired by ideas which have
appeared in examination questions and in other texts.
The problems are grouped according to the chapter
subsections and, in each case, follow a brief summary
of the key ideas of the relevant subsection. This makes
it possible to work through the problems in parallel
with the study of the text, so using them as an aid to
learning. The arrangement is also useful for revision
purposes. Generally I have avoided the inclusion of
discursive questions, except where they are essential
to cover certain key topics which cannot be tested
quantitatively at that stage of the book. I have not
included explicit worked examples separated out
within the text. There are several reasons for this,
among which is the fact that numerical examples
are worked out as part of the narrative, and also, in
many cases, the quantitative development of a key
result serves to illustrate how that key result may be
used.

Despite its title, this is not an easy book, for
although it only deals with the foundations of thermal
physics, the text challenges the reader to think deeply
and carefully about the concepts and methods of the
subject. It also seeks to show the relevance of the
subject by relating these concepts and methods to
the everyday physical world. Thus, although a sim-
plistic reading will yield some understanding cf ther-
mal physics, more thoughtful study will bring extra
rewards. :

I should like to thank my wife, Tessara, for her
suport and encouragement while I was writing this
book, and to thank her and Jean Millar for their help
with some of the illustrations. I am also most grateful
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to C. B. Spurgin whose advice and criticisms as the
book took shape were much appreciated.

It'is also a pleasure to thank: Dr J. Ashmead and
the Institute of Physics for permission to use the
photograph reproduced in figure 4.15; Dr A. M.
Glager for supplying me with the X-ray scattering
picture from which figure 3.5 was prepared; AGA
Infrared Systems AB for supplying me with the ther-
mo reproduced in figure 6.7; Foster Cambridge

Ifor the disappearing filament illustration of figure
1.22; K8 Components Ltd. for permission to repro-
duce the thermistor data shown in figure 1.19; and

the Escher Foundation at Haags Gemeente-museum,
The Hague, for permission to reproduce Escher's
Waterfall in figure 2.4 and on the cover.

My objective throughout the detailed writing of
this book has been to achieve a clear and stimulating
exposition: to write a book which is easy to learn
from. Those who use it must judge whether I have
been successful.

C. J. Adkins
Cambridge, 1986



Units, Symbols and Conventions

This book uses SI (Systéme International) units and
generally follows the current recommendations of the
Symbols Committee of the Royal Society as regards

Angles, though formally defined so as to be dimen-
sionless (see Appendix, section A.1), are sometlmes
considered as supplementary units:

symbols and conventions of notation.*

The names and symbols for the SI base units are: 5:;;::; hg;'?‘::f Sy ;;b : ': ijt”or
Physical Name of Symbol for plane angle radian  rad
quantity ST unit solid angle steradian st

length metre )
mass kilogram ’I_‘he International System has a set of Preﬁxcs
time second wlpch may be used to construct decimal multiples of
electric current ampere units.}
thermodynamic kelvin Multiple Prefix Symbol Muluple Prefix Symbol
temperature . -1 .
luminous candela 10 2 dCCI' d- deca  da
intensity 10- centi ¢ 102 hecto h
1072 milli m 10° kilo k
amount of mole 10  micro 10 M
substance - a mega
10°° nano n 10° giga G
The SI units of certain common physical quantities 107! pico p 1012 tera T
have special names. Some of those used in this book 107! femto f
are listed in the table below. 107! atto a
Physical Name of Symbol for Definition of Fquivalent
quantity ST unit ST unit ST unit forms
force newton N mkgs™? Im™
energy joule J m’ kg s7? Nm
pressure pascal Pa m 'kgs? Nm?JIm™
power watt w m’kgs™ Js™
electric charge coulomb C sA As
electric volt \Y% mikgs > A} JA s
potential 1c!
difference
electric ohm Q mikgs > A™? VA~
resistance
electric farad F m™? kg™'s* A? AsV' cv!
capacitance
inductance henry H mikgs 2 A2 VA's
frequency hertz Hz s

* Quantities, Units and Symbols, The Royal Society (London, 1975).

t u, the prefix meaning one millionth, is the Greek letter mu.
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Symbols for units are always printed in roman

(upright) type while symbols for physical quantities
such as p for pressure are printed in italic (sloping)
type. .
The value of a physical quantity is always equal
to the product of a numerical value and a unit. Thus,
the physical quantity, the mass m, of the electron is
given by

m, = 9.11 x 107 *' kg

In this equation, the magnitude and unit of the physical
quantity are equated across the equals sign. An equi-
valent dimensioniess equation is

m,kg = 9.11 x 107!

Here, the solidus (/) on the left hand side represents
division in the usual way : the physical quantity (mass
of an electron) is divided by a unit of mass (the
kilogram) and the result is a pure number, 9.11
x 1073! the number of kilograms in the mass of
one electron. '

The use of the solidus to represent division of a
physical quantity by a unit may be applied in several
other ways.

a) More complex equations relating physical quantities
may often be written concisely and unambiguously
using the solidus notation. For example, the molar
heat capacity at constant pressure of copper C,,

depends on thermodynamic temperature-T at low

temperatures according to the equation
Co/XI K™ 'mol™! = 1.94(T/©)*

where © = 348K is the ‘Debye Temperature’ of
copper. Here, kJ K™ ' mol ™! is the unit in which the
heat capacity is measured so that the left hand side is
a dimensionless number. Similarly, the term in
brackets on the right is dimensionless because both
T and © are temperatures measured in kelvins.
Clearly, the number 1.94 is also dimensionless to that
the equation is dimensionally homogeneous through-
out. Analternative way of giving the same information
would be to write
Com = a(T/O)’
where
a=194)JK ! mol™!

In this form, dimensional quantities are equated
across the equals sign. But it is wrong to write

Cpm = 1.94(T/6)°
for this equation is dimensionally inconsistent: the

vili

left side has dimensions of heat capacity while the
right side is dimensionless. The equation only ‘works’
if C,,, is measured in the right units. An equation should
express a physical fact; and since a true physical
fact is true regardless of how (in what units) it is
measured, this last form is unacceptable.

b) Intables and graphs the numbers entered or plotted
are dimensionless so that the labelling of the table
headings or graph axes should also be dimensionless.
Thus, a graph of pressure against temperature might
have its axes labelled ‘pressure/mmHg’ and ‘tempera-
ture/K’ respectively. The result of dividing the physical
quantity pressure by the unit of pressure mmHg is a
pure number, and so is the result of dividing tempera-
ture by kelvins. The axes are therefore calibrated in
pure numbers and it is the relationship between two
pure numbers which the graph displays. It is not
correct to label the axes ‘pressure (mmHg) and
‘temperature (K)’ because, following normal notation,
these would mean either pressure multiplied by
mmHg and temperature multipiied by kelvins, or
pressure, a function of the unit mmHg, and tempera-
ture, a function of the kelvin. Either alternative is’
nonsense. Nevertheless, such forms have been used
in the past with the meaning ‘the numbers on this
axis give the magnitude of the pressure when it is
measured in mmHg’, etc. Clearly, there is no need
to have to adopt a special meaning to the use of
brackets when the solidus notation is physically and
mathematically correct and totally unambiguous.

¢} The solidus notation is also useful for changing the
upits in which a physical quantity is measured. It
reduces conversion of units to routine algebra.
Suppose the speed u of a car is 90 km h~ ! and we wish
tofinditsspeedinms™'. Weare givenu/kmh™! = 90
and we want u/ms~'. Following the normal rufes of
algebra we may write

wms™! = (ukmh™!) x (km/m) x (s/h)

The first bracket on the right is the number given,
the second is the pure number which results from
dividing 1 km by 1m, namely 1000; and the third
term on the right is the pure number which results
from dividing the unit of time, 1s by the unit of time
1 h, namely 1/3600. Thus,

u/ms™! =90 x 1000 x 1/3600 = 25
or

u=25ms"!

Finally, we list the symbols used in this book.
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ROMAN LETTERS

~ /RO U0

3 3 ~x~ 30 ~

-~

o~ ™

=

T

constants

constants

molecular speed
distance
infinitesimally small change in
spectral emissive power
electronic charge

base of natural logarithms
number of degrees of freedom
a function
acceleration of free fall
Planck constant

an integer

Boltzmann constant
mean free path

mass

number of moles
number density
pressure

radius, distance
Celsius temperature
time

a variable

a variable
coordination number
a variable

area

heat capacity
capacitance

Young modulus
electromotive force
electric field strength
force

scale height

current

joule

current density

kelvin

bulk modulus

lergth

latent heat

inductance

Lorenz number

molar mass

power

probabihity

heat

charge

R resistance
molar gas constant
S entropy .
molecular diameter
T thermodynamic temperature
U internal energy

V' volume

potential difference
¥ speed
W  work

GREEK LETTERS

Letter Name Meanings

X alpha spring constant. iinear expan-
sivity, absorptivity

I beta cubic expansivity

3 gamma ratio of principal heat capaci-
ties, surface tension

o delta small change in

A deita (cap.) finite increment of

£ epsilon energy., emissivity

n eta viscosity, efficiency

9 theta angle

(C] theta (cap.)  empirical temperature

K kappa comp: essibility

4 lambda thermal conductivity, wave-
length

u mu one millionth

v nu frequency

n pi ratio of circumference to dia-
meter of circle

p rho density

¢ sigma electrical conductivity, Stefan-
Boltzmann constant

@ phi potential

o phi {cap.) flux density

0 omega angular frequency

Q omega (cap) solid angle, ohm

MATHEMATICAL NOTATION

+ plus

minus

equal to

not equal to .
approximately equal to
proportional to

smaller than

b/ N1

A



larger than

smaller than or equal to

larger tham or equal to

much smaller than

much larger than

mean value of a

function of x

the limit to which f(x) tends as x ap-
proaches a

finite increment of

small change of

differential coefficient of f(x) with respect
to x

o
o
daf

| flx)dx
¢ f(x)dx

eX, exp x
Inx

g x

partial differential coefficient of f(x, y)
with respect to x when y is held constant

total differential of f (infinitesimal change
in f)

the integral of f(x) with respect to x

the integral of f(x) with respect to x
around a closed path

exponential of x

base of natural logarithms

natural logarithm (logarithm to the base e)
of x

common logarithm (logarithm to the base
10) of x
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1 Temperature

1.1 INTRODUCTION

Thermal physics is the study of those properties of
materials which are affected by temperature. It is an
enormous field, having something to say about
subjects as diverse as the expansion of a solid, the
internal constjtution of stars and why the electricai
resistance of some metals vanishes at low tempera-
tures. ;

The job of the scientist is 10 observe nature, to try
10 recognize the regularities 1n its behaviour and to
seek to link those regularities together by laws and
principles. For example, it is often found that the
current flowing in an electrical conductor is propor-
tional to the applied potential difference; this regu-
larity is called Ohm’s law.

When the scientist tries to ‘explain’ his observations,
there are two levels of explanation he can attempt. He
may content himself with ideas relating to the
behaviour of matter in bulk (e.g. Ohm’s law). This is
the macroscopic approach. In the area of_ thermal
physics it leads to the subject called thermodynamics.
This branch of physics developed most rapidly during
the last century in connection with the study of
machines, such as the steam engine, which supplied
power for the new industries; but, it was soon
realized that the laws of thermodynamics were
very fundamental and of importance in areas quite
different from power engineering where they were
developed. The laws of thermodynamics provide a
theoretical framework which is used in many branches
of modern science. A typical result which may be
derived by thermodynamics is the Clausius—Clapeyron
equation (page 111) which connects the variation with
temperature of vapour pressure with latent heat.

At the other level of explanation, the scientist tries
to base his understanding on ideas of the nature and
properties of matter at the atomic level. This is
microscopic physics. An example is the kinetic theory
of gases (chapter 3) which ‘explains’ the bulk beha-
viour of gases in terms of the properties of the mole-

cules of which the gas is composed. While models and
laws relating to matter at the atomic level play no
direct part in macroscopic physics, they are the
essence of microscopic physics. In thermal physics,
the microscopic approach leads to the subject called
statistical mechanics. A typical result of the arguments
of siatistical mechanics is the Maxwell distribution
(page 54), which gives the probabilities of different
molecular speeds in a gas. .

Both macroscopic and microscopic approaches are
of value, as we shall see later in this book, for there are
times when we need to explain in terms of fundamental
laws operating at the atomic level, while there are
other times when to involve ourselves with detailed -
microscopic models wouid be a positive encumbrance.

1.2 SOME BASIC IDEAS

We call the object we are investigating the system. It
could be a volume of gas, or a spring, or a refrigerator,
or a solid in the process of meiting. We shall often
illustrate our arguments by taking as a model system
a given mass of gas in a cylinder with a frictionless
piston. This is a good model to take because it is easy
to visualize what happens when we heat it or do work
on it by compiessing it. ’

We describe the state of the system in terms of
appropriate parameters or variables, such as mass,
pressure, volume, density, temperature. When a system
is in a given state, we will always get the same results
for any measurements wemay make on it. The variables
are not all independent ; some are related to one ano-
ther. For example, density is mass/volume. For simple
systems of given mass we find that we need to fix the
vaiues of two variables in order to fix the state of the
system. For our given mass of gas, for example, we
find that, if we first set the volume, we may still adjust
the pressure to any value we please (by varying the
temperature), but once the pressure is set alsc, there

- 15 no other property which can be varied. We therefore
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say that the gas has two degrees of freedom: we are
free to choose two of the variables as we like, but then
all the other parameters will have taken up definite
values which we cannot adjust. This means that any
mathematical equation connecting system variables
must have at least three variables in it: the values of
two must be known in order to determine the state
of the system and so fix the value of a third. Thus, the
equation of state of an ideal gas (page 40) connects
pressure, volume and temperature: pV/T = constant.
Agdin, this is why we have two common heat capaci-
ties. A heat capacity is the rate at which heat is ab-
sorbed as we change the temperature (section 2.3);
but since simple systems have two degrees of freedom,
we do not know how the system is going to change as
the temperature is changed unless more information
is given. Two simple cases are that the system should
be kept at constant volume or at constant pressure.
Such a condition is called a constraint because it
constrains the system to change in a certain way.
Any constraint removes the second degree of freedom
so that now a definite amount of heat is absorbed as
the temperature is changed.

In developing the ideas of temperature, heat, and
so on, we shall be interested in the ways systems
interact with one another. There are two kinds of
interaction. In work-like interactions, one system
does work on another (figure 1.1): a force moves
through a given distance as in compressing a gas or
stretching a spring, or a battery will do work in
charging a capacitor because it forces charge to flow
against an opposing potential difference. The other
kind of interaction is thermal and is typified by flow
of heat when we place a hot body in contact with a
cold one (figure 1.2). In both kinds of interaction,

Figure 1.1 A work-like interaction

- ’
T -~

Figure 1.2 A thermal interaction

energy is transferred from one system to another;
the difference is that in work-like interactions the
process involves some sort of large scale motion (all
the molecules of the piston move forward together as
the gas is compressed), whereas in thermal interac-
tions the energy is associated with disordered thermal
motions of the atoms of which the system is composed :
the random motions of the molecules of a gas or the
vibrations of the atoms of a solid. When a thermal
interaction takes place, the atoms of the cooler
system are excited into more violent thermal motion
by contact with the hotter (moré energetic) atoms of
the hotter system. .

If two systems are placed in contact in such a way
as to allow thermal interaction, they are said to be
in thermal contact (figure 1.3). If a system is prevented
from interacting thermally with its surroundings it is
said to be thermally isolated (coffee in a vacuum flask),
and any change it undergoes is said to be an adiabatic
change. Put differently; an adiabatic change is‘one in
which no heat enters or leaves the system. We shall
discuss the ideas of heat and work more fully in
chapter 2.

If you have found these introductory ideas con-
fusing at this stage, it is probably because I have been
giving a kind of preview of the things we shall be
discussing carefully later in the book. Perhaps you
should return to sections 1.1 and 1.2 when you have
finished reading it!



Figure 1.3 Two systems making thermal contact

1.3 TEMPERATURE

The idea of temperature almost certainly originally
arose from the physiological sensation of hotness,
an unreliable measure of temperature (figure 1.4).
We can, however, develop a more exact concept of
what temperature means by discussing what happens
when bodies are placed in thermal contact.

If we take two systems and place them in thermal
contact we generally find that initially changes will
occur in both (figure 1.5). Eventually the changes cease,
and the systems are then said to be in thermal equi-
librium. We introduce the idea of temperature by
saying that the condition for the systems to be in thermal
equilibrium is that they should be at the same tempera-
ture. Conversely, two systems which are already at the

same temperature will not undergo change when
placed in thermal contact. Equality of temperature
is therefore the condition for thermal equilibrium.

However, defined like this, it is not clear that the
condition for thermal equilibrium might not depend
on the nature of the systems concerned. Can the same
condition apply when we put a thermometer in our
mouth to take our temperature as applies when we
put a thermometer in a beaker of concentrated sul-
phuric acid? Experience shows that the condition
for thermal equilibrium does not depend on the nature
of the systems concerned. This experimental fact is
embodied in the zeroth law of thermodynamics (so
called because the need for it was not recognized
until after the first law had been established).

If two systems are separately in thermal equilibrium
with a third, then they must also be in thermal equi-
librium with each other.

Since we are free to choose anything we like for the
third system, it follows that the condition for thermal
equilibrium cannot depend on the nature of the sys-
tems concerned: all systems in thermal equilibrium
have the same temperature irrespective of their nature.
Another way of expressing this is to say that tem-
perature is a universal property. The kind of experi-
ment with which we might illustrate the zeroth law
is shown in figure 1.6. -

We should note that if we require one system to be
in thermal equilibrium with another (i.e. at the same
temperature) this represents a constraint on the system
and removes one of its degrees of freedom. With our
fixed mass of gas, for example; in the absence of any
constraint, we are free to choose pressure and volume
as we please; however, as soon as we require thermal
equilibrium with some other system, the temperature
is fixed, and for every value of volume there is only one
possible value of pressure. We can put this another
way by saying that for each temperature there is a

Cold

Tepid

Figure 1.4 The physiological sensation of hotness is an unreliable measure of tem-
perature. After one’s hand has been in cold water for a time, tepid water feels hot.
After it has been in hot water, the tepid water feels cold. ’
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Figure 1.6  An illustration of the zeroth law. Systems 4 and B are’
fixed masses of gases at particular values of pressure and volume.
The third system, C, is a thermometer. If C is in thermal equi-
librium separately with 4 and B, so that its reading does not
change when it is placed in thermal contact with either, then no
changes will take place when 4 and B are placed in thermal contact

with each other (because they are already at the same temperature).

unique relationship between pressure and volume.
This is represented mathematically by an equation of
the form

f(p,V)=©

where f(p, V) stands for the formula which connects
the pressure and volume to the temperature © *

* The Greek letter theta. For temperatlire we use the capital letter.
_ The lower case letter, 6. is generally used for angles.

For an ideal gas, f is a simple product, pV, and for
constant temperature we have

Sf(p, V) = p¥V = © = constant

which is Boyle’s law;(page 40). The curve relating
p to V for a given value of @ is called an isotherm
(figure 1.7). : j

Pressure

Volume

Figure 1.7 Isotherms for an ideal m For eachiemperaturc. there
is only one possible value of pressure for each value of volume,

1.4 SCALES OF TEMPERATURE

We have introduced temperature as a rather abstract®
concept  connected with thermal equilibrium. In

practice, we would like to be able to represent

temperature by a number whose magnitude changes

in some regular way in relation to our ideas of hot-

ness: the hotter the body, the larger the number-
representing temperature. This is what we do when

we set up a scale of temperature. The easiest way to

do this is to choose a convenient system with a

property x which changes with temperature and take

the value for temperature as linearly proportional

to x:

O(x)=ax + b (1.1)

where a and b are constants. Here, again, the con-
vention written ®(x) reminds us that @ is a quantity
whose value depends on the value of x: © is said to
be a function of x. The relationship of equation /.7 is -
illustrated in figure 1.8.
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Gradient = a

Figure 1.8 A plot of the equation &(x) = ax + b

When we set up a temperature scale for everyday
use, we want a conveniently placed zero, say low in
the range of commonly encountered temperatures,
and a sensibly sized unit. Conventionally, the ice
point,. the temperature at which water freezes at one
atmosphere pressure, is taken as 0°, and the steam
point, the temperature at which water boils at one
atmosphere pressure, is taken as 100°. A scale so
constructed is known as a centigrade scale. (Centi-
grade means one hundred steps.) We may take some
examples.

A temperature on a centigrade scale based on the
expansion of mercury in a mercury in glass thermo-
meter uses the length of mercury in the capillary as
the thermometric (temperature measuring) quantity x.
The centigrade temperature is given by

1
=(L ~ L) x 12
OL)=(L - L) x L.~ L) (1.2)
where L, L, and L, are the lengths of the mercury at
the temperature to be measured and at the ice and

steam points respectively (figure 1.9). Comparing
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Figare 1.9 Constructing a centigrade scale for a mercury-in-giass
thermometer

equation /.2 with the general linear form, equation /.1,
we find

100/(L, ~ L)
—100LAL, — L)

Again, a temperature on a centigrade scale based
on the variation of the resistance R of a ¢oil of copper
wire is given by

O(R) = 100R — RY(R,—~ R) (L)

where R, R; and R, are the values of the resistance
at the temperature to be measured, and at the ice and
sfeam points respectively.

Scales constructed in this way are known as em-
pirical scales: empirical means based on experiment.
The symbol @ isalways used for empirical temperature.

When the scales are set up like this, we find that
the value obtained for a temperature depends on what
thermometer we use. This is because different pro-
perties do not respond in the same way to change of
temperature. As a result, centigrade scales based on
different systems will not generally agree with one
another except, of course, at 0° and 100°, the calibra-
tion points, where they must agree by definition.
Figure 1.10 shows the differences between centi-
grade temperatures determined with different thermo-
meters.

Piatinum resistarnce

Mercury in glass
/

/
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Chromel—alume! thermocouple

-1-0

Figare 1.10 Differences between centigrade scales of commoca
thermometers over the temperature range 0-100 °C



In the search for a scale of temperature which did
not depend on the properties of particular substances
it was found that disagreement was small among
thermometers based on the behaviour of gases. Gases
have two degrees of freedom, so that a constraint
has to be applied if the pressure or volume is to be
uniquely related to temperature. Commonly, volume
is kept constant and pressure used as the thermometric
property. This is a constant volume gas thermometer
(page 8) and will give a centigrade temperature

O(p) = 100(p — p)/(p; — p)

Now while disagreements are generally small when
temperatures are determined with different gases at
normal pressures in this way, it is found that the
differences which are present become smaller as the
pressures used are reduced. If the measurements are
extrapolated to find the temperature which would be
given if the pressure could be reduced to zero (figure
1.11), it is found that, in this limit, all gas thermometers

(V = constant)

—/1‘-"
X
o X
X X — \ Cifferent gas
x:)‘\-’("‘_ thermometers
e ——
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Figure 1.11 All gas thermometers give the same value for a tem-

perature in the low pressure limit. With each thermometer. the
temperature is found using different values of p;. If the lines through
the experimental values of temperature are extended back to find
the temperature which would be given if the measurements could be
made with p, = 0, it 1s found that ail the thermometers give the
same value for the temperature.

give the same value for a temperature. One thus ob-
tains a temperature scale which is independent of the
properties of any particular substance. This scale is
called the perfect gas centigrade scale. On the perfect
gas centigrade scale, the expression for the temperature

6

is written
(V = constant)

(1.3)
lirrz means that we take the number given by the
Formula when the measurements are extrapolated to
the limit where p; = 0 (figure [.11).

If measurements made on this scale are extrapolated
back to find the perfect gas centigrade temperature
at which the pressure of the perfect gas would vanish
(figure 1.12), the value found is —273.15. This tem-
perature is known as absolute zero.

G)pgc = hn}) lOO(p - pu)/(pt - pl)
P

pge

1
—27315 0 ®

Figure 1.12 The pressure of an ideal gas would vanish at a perfect
gas centigrade temperature of —273.15

1.5 THERMODYNAMIC
TEMPERATURE

The reason why all gases give the same value for a
temperature in the low pressure limit is that, in that
limit, their behaviour tends to that of the perfect
or ideal gas (chapter 3) whose equation of state is

pV/T = constant (1.4)

where T is thermodynamic temperature, the funda-
mental measure of temperature which comes from
the second law of thermodynamics (chapter 7). For
the moment the equation must ‘be taken on trust.
(When we discuss the ideal gas in chapter 3, we shall
show that its equation of state is pV/© = constant,
where @ is temperature on the perfect gas scale. It is
not until chapter 7. when we discuss the second law,
that we are able to explain the idea of thermodynamic
temperature and prove that perfect gas temperature’



is identical to thermodynamic temperature.) Sub-
stituting /.4 in 1.3, the volume and the constant
cancel through numerator and denominator and we

get c

=(T-T) % (TI(X)T) (1.5)

This equation shows that perfect gas centigrade
temperatures, like thermodynamic temperatures, are
" independent of the propertles of any pamcular
substance.

Thermodynamic temperature is’ now accepted as
the fundamental measure of temperature. Gases
are unique in that thermodynamic temperature ap-
pears in such a simple way in the equation of state
(which holds for real gases in the low pressure limit),
and this is why determinations of thermodynamic
temperatures are often ultimately based on gas
thermometry.

Now we are free to choose the size of the unit of
thermodynamic temperature as we please. If we
choose to have 100 units between ice and steam points,
equation 1.5 beeomes

8, = (T - T)/K (1.6)

However, there are disadvantages in fixing the size of
the unit in this way. In the first place it is necessary
to calibrate a _gas thermometer at two fixed points:
the ice and steam points. Secondly, when measure-
ments made at the fixed points are extrapolated back
to very low temperatures, that is to small values of T,
the experimental uncertainties become relatively
‘large, which could be serious in low temperature
" work. Now we-notice that thermodynamic tempera-
ture has a natural zero, namely, the temperature at
which the pressure of an ideal gas would vanish (see
equation /.4). If we take this natural zero as a fixed
point on the scale, we only need to calibrate the
thermometer at one fixed point to fix the size of the
unit. In effect, we choose the value of thermodynamic
temperature fo;.bne fixed point and this sets the scale.
This way of fixing the size of the unit of thermodynamic
temperature is the one now adopted by the Inter-
national Committee of Weights and Measures. The
fixed point chosen is the triple point of water (the
temperature at which water, ice and water vapour
coexist in equilibrium, a temperature more reproduc-
able than the ice or steam points) and the value of
temperature allotted to it is 273.16. The udit so

defined is called the kelvin* for which the symbol K
is used. Thus

Thermodynamic temperature is the fundamental tem-
perature; its unit is the kelvin which is defined as the
fraction 1/273.16 of the thermodynamic temperature of
the triple point of water.

Therefore, a thermodynamic temperature determined
by gas thermometry would be given by
273 16

T/K = hm (pV) X (pV) (1.7)

where pV is the value of the product of pressure and
volume at the temperature to be determined and
(pV), is the value of the product at the triple point.
Absolute zero is 0 K by definition. When we discuss
the ideal gas we shall see that absolute zero is the
temperature at which all thermal motion would cease.

Figure 1.13 shows schematically how the triple
point is achieved for thermometer calibration.

Figure 1.13 A triple point cell. The cell is cooled until some-ice is
present as well as water and water vapour. all three are in
equilibrium with one another, the tempentm-e is 273.16K by
definition, The thermometer to be calibrated is inserted into the
central tube.

1.6 THE CELSIUS
TEMPERATURE SCALE

The reason for the choice of 273.16 K for the thermo-
dynamic temperature of the triple pdint of water

* After Lord Kelvir (William Thompson), 1824-1907.



