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Preface

The contents of this volume are a testament to the continuing
vitality of funetional analysis as a clearinghouse for ideas in the
various ‘‘hard’’ disciplines of modern analysis, e.g., harmonic anal-
ysis on Lie groups, spectral theory and scattering theory, and the
qualitative theory of nonlinear PDEs. Functional analysis has, of
course, always played this role ever since its inception in the early
1900s in the work of Hilbert, Banach, Frechet, Riesz, #nd Von
Neumann. It began to play this role much more decisively, however,
in the early 1940s, when Gelfand and Segal began publishing their
papers on locally compact groups, Wigner and Mackey created the
theory of induced representations, Bergman's work on representa-
tions of the Lorentz group set the stage for the later work of Harish-
Chandra, and Schauder and Leray published their seminal papers on
nonlinear elliptic PDEs. To a certain extent subsequent develop-
ments in all the areas alluded to above have been no more than an
effort to digest the developments of this period. An example is the
~ *‘abstract” Plancherel formula of Segal for unimodular locally com-
pact groups. This theorem provides one, a priori, with the Plan-
cherel measure, but the problem of actually writing it down in con-
crete cases was not settled until decades later with the work of
Harish-Chandra in the semisimple .case and of Kirillov and Aus-
lander-Kostant in the solvable case.

For the most part the contents of this volume do not deal with the
machinery of functional analysis per se, but with the applications.
(An exception is Sakai’s paper on C*-algebras. One of the more
agreeable surprises of the past ten years has been the renewed life
pumped into this subject by Alain Connes and others.) The applica-
tions range from the extremely pure to the very applied and touch on
subjects as unrelated as constructive field theory and fluid dy-
namics. However, by a small miracle, virtually any trained mathe-
matician of the present generation can read most of these articles,
with some benefit, thanks to the language of functional analysis,the
lingua franca of present-day mathematics, in which they are written.

-1 have described this as a small miracle because without this lan-
. xiii



Xiv . PREFACE

guage mathematicians in different specialities would nowadays be
communicating across barriers far more formidable than those that
impeded interdisciplinary communication 75 years ago. ’

Many mathematicians (an adequate list would be impossible to
provide in this preface) have played a role in the Wistory sketched
above. A few mathematicians have played a role in all phases of this
history. Prominent among them is Irving Segal, and it is fitting that
this volume be dedicated to him.



Introduction

Irving Ezra Segal was born in New York on September 13, 1918,
went to public schools in Trenton, was an undergraduate at Prince-
ton, and received his Ph.D. in mathematics at Yale in 1949. Einar
Hille was his thesis adviser. After some time at Harvard and Prince-
ton Universities and The Institute for Advanced Study, he joined *' =
faculty of the University of Chicago in 1948, and in 1960 he moved to
Massachusetts Institute of Technology. During this time he has pro-
duced 136 papers and five books, and has supervised 37 Ph.D. dis-
sertations.

A summary of Segal s thesis [3]+ was published in 1941 War work
and military service delayed a fuller account [7] until 1947. This
thesis was a major work which showed the powér of abstract fu:i:-
tional analysis in extendipg and clarifying classical results of 1...r-
monic analysis. At the time this work was done it would have 1ip-
peared unlikely that maximal ideals, whose existence was proved by
transfinite induction, could be identified with concrete ochcts (char-
acters in the commutative case). Segal was one of the pioneers of
new methods in analysis, proving the existence of analytncal objects
by characterizing them from above by general properties rather than
directly constructing them from below. This line of work was pur-
sued in a number of papers, including [12}, which characterized
closed two-sided ideals in C*-algebras, and {13] and 13}, which are
fundamental to the harmonic analysis of a general 16cally compact
unimodular group.

An important paper from this period is his system of pos‘ ~ites for
general quantum mechanics [9], which appeared in 1947. This juper
introduced the important concept that it is the observables an.. ‘':eir
states, not the underlying Hilbert space, which are the key i
of quantum theory, an idea which he developed later in a num®..
papers including {34]. This viewpoint is so widespread now that it .
hard to realize that it appeared radical at the time. Equally imgortant

t Numbers in brackets [ ] refer to Irving Segal’s journal articles and numbers in

braces { } to his books. To keep this introduction manageable, there are no references
to the work of others.

XV



xvi INTRODUCTION

to probability theory was the related insight {22] that it is the algebra
of random variables, not the underlying probability space, which is
essential. This point of view led to beautiful results on second quan-
tization in [25], [26], and [31], and the whole development is re-
viewed in [50]. -~

In 1960 Segal published [38) a framework for the development of a
theory of interacting (nonlinear) quantum fields. As is characteristic
of his work, rather than attempting to solve technical problems
within an accepted framework, Segal asks first what is essential in
the framework, what is extraneous, and what is a proper general
setting. Although the flowering of constructive quantum field theory
took place largely outside of Segal’s proposed framework, it remains
as a challenge to find a deeper understanding of the equations of
motion of a quantized nonlinear field. Segal’s ideas on nonlinear
quantum fields are highly geometrical and have stimulated beautiful
work by him (beginning with [41] and [42] and continuing through
many later papers) and his students on classical nonlinear equations
and the geometrical structure of their infinite-dimensional solution
space.

In 1951 Segal published a paper [17] full of novel mathematical
and physical ideas. In particular, he showed that the Lie algebra of
the Poincaré (inhomogeneous Lorentz) group is a limiting case (or
contraction as the notion iater became known among physicists) of
the Lie algebra of the conformal group. Just as classical mechanics
is a limiting casc_of quantum mechanics when # — 0, and nonrel-
ativistic mechanics is a limiting case of relativistic mechanics when
Cc = ®, 30 mnght relativistic quantum theory be a limiting case of a
more general theory as the structure constants of the conformal Lie
algebra tend to those of the Poincaré Lie algebra. Such a theory
would agree with the usuatl theory at familiar distance scales, but
would be very different at extremely large and at extremely small
distances. In the past decade Segal has vigorously pursued the large-
distance consequences of this idea {5}. The result is a cosmology
totally at variance with the usual expanding universe cosmologies.
Segal’s book is an unusual blend of mathematical theory and analy-
sis of observational data, and it shows how precarious a foundation
is Hubble’s law for the elaborate superstructure that has been
erected upon it.

1 have briefly touched on some of the main themes in Segal’s work
which show why it is unique and exciting. He is also a unique and
exciting teacher. Let me now speak in a personal vein, and perhaps I
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shall to some extent speak for his other students as well. Irving
Segal is a constant source of fresh ways of looking at things. I have
frequently observed him in conversations with experts in differential
geometry, partial differential equations, group representations,
probability theory, etc. He will pose a disturbing question. A fre-
quent reaction will be an unspoken feeling that that is not the kind of
question one asks in this field and a puzzled sense that there may be
something quite interesting involved. I took a course in probability
theory from him at the University of Chicago, and the subject came
alive with a special viewpoint, a sense of what is basic, and pros-
pects for research. His encouragement was strong when I was writ-
ing a thesis, and equally important was his total lack of encourage-
ment when I found a result unrelated to anything beyond itself. One
of the chief characteristics of Segal’s work is that his theorems are
part of theories, and this sense of the global nature of mathematical
research is one of the most valuable things that he imparts to his
students.

Mathematicians tend to be mistrustful of the world, except as a
source of problems. Physicists tend to be mistrustful of mathemat-
ics, except as a tool. Irving Segal is a mathematician with a passion-
ate conviction that mathematics can give us knowledge about the
world. This conviction is so strong that it led him from a discovery
about Lie algebras in 1951 to years of work in the 1970s analyzing
data on galaxies and quasars; it is so strong that it has often involved
him in scientific controversies. In some of these controversies his
vision of what form the theory should take has on occasion led him
to give less value to the work of others than I for one would give;
certainly his own work has frequently been unfairly depreciated by
established experts. We are fortunate that controversy in our field
concerns matters that can be tested, and that it can lead to an in-
crease in knowledge. .

Irving Segal once remarked that his original intention was to go
into class field theory. It is safe to say that had he done so, that kind
of field theory would have received from him as strong a personal
imprint as this kind of field theory bears today: fundamental view-
points due to him and later taken for granted by workers in the field,
a large-scale vision of how the theory should develop, the discovery
of deep results and unsuspected connections, and provocative chal-
lenges to the accepted wisdom.

Edward Nelson



Contents

A Remark on.the Polymer Problem in Four Dimensions
Edward Nelson

References

Lagrangian Analysis and Quantum Mechanics
Jean Leray

References

Propagation of Obstructions to Smooth Solutions of the
.Cauchy-Dirichiet Problem of the Wave Equation

Lars Garding

Introduction

A Boundary with a Corner

A Smooth Boundary

A Singular Cauchy-Dirichiet Problem
References

Nl e

Functional Calculi for Pseudodifferential Operators, i1
J. D. Alvarez Alonso and Alberto P. Calderén

Introduction
0. Preliminary Results
vii

L=



viii CONTENTS

1. Pseudodifferential Operators on Manifolds:

First Definitions . 43
2. The Algebras A (V) and HLV) 44
3. The Algebra M (V) . 47
4. Functional Calculus in 9,(V) 56
5. Functional Calculus in .#(V) 62
References 72

Cauchy Problem at Past infinity for Nonlinear Equations
in Curved Spacetime

Yvonne Choquet-Bruhat and Demetrios Christodoulou

Introduction 73
1. Definitions and Hypotheses .74
2. Function Spaces 76
3. Energy Estimates . 78
4. Weighted Function Spaces 79
5. Existence Theorems for Linear Equations 80
6. Quasi-Linear Wave Equations 83
7. Existence Theorems : 89

References 91

On the Cauchy Problem for the (Generalized)
Korteweg-de Vries Equation

Tosio Kato

1. Introduction ’ 93

2. A Theorem on Abstract Quasi-Linear
Equations 9%
3. Review of the H* Theory 98
4. The H* Theory, s > # 100
5. The H! Theory 104
6. The Smoothing Effects 105
7.. The H° Theory for (K) 107
8. The H?* Theory and the & Theory 108
9. The Space L} 111
10. The H* N L} Theory 114
11.  Regularity for (K) 116



CONTENTS ix

12. The H® N L} Theory for (K) 119
Appendix 121
References 127

Scattering Theory for the Wave Equation with a |
Short-Range Perturbation

Ralph S. Phillips

1. Introduction 129
2. - The Perturbed and Unperturbed Systems 130
3. The Proof of Theorem 2.4 133

References ' 137

Supertempered Distributions on Real Reductive Groups

Harish-Chandra
1. Introduction 139
2. The Constant Term of a Distribution - 140
3. The Mapping I§ 142
4, Supertempered Distributions 143
5. Frobenius Reciprocity - 144
6.  The Bijection from K\, to W(G/B\B*' 146
7. Orthogonality and Completeness 148
8. Fourier Transform of Orbital Integrals 149
References 152

Derivations in Operator Algebras

Shoichiré Sakai
1. Introduction 155
2. Differentiations 156
3. Derivation and Statistical Mechanics 160
4. Derivations and Quantization of Spaces 162

References 162



STUDIES IN APPLIED MATHEMATICS
ADVANCES IN MATHEMATICS SUPPLEMENTARY STUDIES, VOL. 8

A Remark on the Polymer Problem
in Four Dimensions’

EDWARD NELSON
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Constructive quantum field theory has achieved great success in
studying superrenormalizable models, but the barrier that separates
them from the renormalizable ones has not yet been penetrated. The
purpose of this chapter is to focus attention on some aspects of the
simplest renormalizable problem of all: the polymer problem in four
dimensions.

A polymer is a long object whose thickness is extremely small in
comparison to its length. Yet the thickness has important consequences
in the excluded volume effect: a polymer may not loop back and cross
itself. It is the excluded volume effect that keeps a plateful of spaghetti
from lying flat on the plate.

What does a typical polymer look like? Were it not for the excluded
volume effect we could model polymers by Wiener paths. Edwards [3]
proposed to model polymers by introducing a weighting factor on
Wiener paths, formally given by

N exp(—g J: fol S(w(s) — w(z))dsdt), (1)

where ¢ is the Dirac delta function, g is a coupling constant measuring
the strength of the excluded volume effect, and N is a normalization
constant.

More precisely (cf. [ 7]), let Q be the space of all functions from [0, 1]
to R? and let v be the Wiener measure on Q for a given variance param-
eter o2, Let &, be a smooth positive function on R? that tends to 4, in
the sense of distributions, as ¢ — 0. Let y, be the probability measure

' This work was supported in part by NSF grant MCS-7501863.
i
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2 EDWARD NELSON

on Q whose Radon-Nikodym derivative with respect to v is .
Ns exp<_ga J: J‘ol 52((0(8) - (D(t))ds dt), (2)

where g, is an arbitrary positive function of ¢ and the variance parameter
6? of v is also allowed to be an arbitrary positive function of &. Then any
probability measure p that is a weak limit of p, as e » 0 is called a
polymer measure.

Polymer measures also occur in the seminal paper by Symanzik [5]
on Euclidean field theory. In this paper Symanzik showed that the
Euclidean theory corresponding to a scalar quantum field with a ¢*
self-interaction is the classical statistical mechanics of polymers with
a local interaction. In the classical statistical mechanics of a gas, a
configuration of point molecules is given the weighting factor

exp[—B Y Ux; — x;)]. 3

In Symanzik’s theory (simplified for purposes of exposition) a con-
figuration of polymers is given the weighting factor

exv(—g T [ sds) — wm)ds dt). @

There is one important difference: in the classical statistical mechanics
of a gas the terms i = j in (3) give only a constant and may be omitted,
whereas in Symanzik’s theory the terms i =j in (4) are essential.
Symanzik’s theory is not a theory of interacting Wiener paths; it is a
theory of interacting polymers.

There are deep results on polymer measures in all interesting

dimensions except for d = 4. For d = 2, Varadhan, in the Appendix to
[5], showed that

fol Jy 340t9) = w0 dsde — E [o {2 sdoots) - wi@y)dsar,

where E denotes the expectation (integral with respect to v), converges
as ¢ — 0 to a random variable, which is in L? for all p < oo, giving a
polymer measure that is absolutely continuous with respect to Wiener
measure. For d = 3 Westwater [7] proved the existence of a non-
trivial polymer measure for g sufficiently small. In both cases the
methods were based on techniques of Euclidean field theory, going in
the opposite direction from Symanzik’s proposal. The original
Symanzik method has never been carried through, in any dimension,
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to construct a field theory (but see [8] for related results). This would
be a worthwhile project. For d > 5 Lawler [4] has shown that the self-
avoiding random walk obtained by erasing, as they occur, all closed

loops in an unrestricted random walk on a lattice converges, as the
" lattice spacing tends to zero, to a Wiener process. This result of
Lawler’s gives strong support to, but does not prove, the conjecture
that every polymer measure in dimension d > 5 is just a Wiener
measure.

The measure that Westwater constructs is singular with respect to
Wiener measure. Little is known about the properties of the sample
paths of-the Westwater process. For example, is a Westwater path
bigger or smaller (say, in terms of exact Hausdorff dimension) than a
Wiener path? One intuition is that it should be smaller because it has
no loops. Symanzik, however, gives a convincing heuristic argument
[5, pp. 201-202] that it should be bigger. Now that Westwater has
constructed the measure, it should be possible to make this argument
into a theorem for d = 3. With probability one, a Wiener path in
dimension d > 2 has Hausdorff dimension 2 but has zero Hausdorff
2-measure (see [6] and [1] for the exact Hausdorff dimension of
Wiener paths in dimension 2 and in dimension d > 3, respectively).
Does a Westwater path have nonzero Hausdorff 2-measure with
probability one?

The time it takes a Wiener path to go distance ¢ is of order 2. Let
7 be a function of ¢ such that ¢/t — 0 as ¢ — 0, and let r be a fixed time.
A pair (s,t) with s <r <t such that |o(s) — w(t)| <e and t —~s> 1
will be called a near loop about r. For small ¢, the time 7 is enormous
compared to ¢2, so in general a near loop of 2 Wiener path will travel
an enormous multiple of ¢ away before coming back to within ¢ of
itself. Now suppose we have another function %, possibly much bigger
than 1, such that £2/T - 0 as ¢ - 0; let us ask how likely it is to see a
near loop of the order of magnitude 7. We claim that for any constant C,

vi({w:IsTis<r<t, ols)— ()| <e,and CT =t —s> C7'F})»0 (5)

as ¢ > 0 if d > 4. This is because Wiener measure is invariant under
the scaling transformation w — #, where n(f) = a2~ V2w(at) (here for
notational convenience we take the time parameter set for the Wiener

process to be [0, o) rather than [0, 1]), so that (5) is equivalent to
v{w:IsTts<r<t|ols)~o)|<et "2 and C=t—s>=C71}) - 0.

(6)
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But this holds by the continuity with probability one of Wiener paths
and the fact that with probability one Wiener paths in dimension
d = 4 have no double points [2]. Nevertheless, and this is what dis-
tinguishes the Wiener process in dimension 4 from the Wiener process
in dimension d > 5, it follows from the work of Lawler (see the proof

of Theorem 2.6 of [4]) that there is a function t with £2/7 — 0 such that
in dimension 4 we have

v({w:Isdts<r<tjols) —o@)| <gandt—s=t})-»1 (7

as ¢ — 0. Thus in dimension 4 near loops are constantly occurring, but
if we try to specify in advance their order of magnitude we do not see
any. It is possible that here is a phenomenon that would not be captured
by hierarchical models, renormalization group techniques, or computer
simulation. o

This suggests a possible candidate for a nontrivial polymer measure
in dimension 4. For fixed ¢, and 7 as in (7), let S, be the set of all paths
that do not have any near loops about any r, and let 4, be the restriction
of Wiener measure to S,, so that A (A4) = w(S,)"! v(S, n 4). Since
v(S,) = 0 by (7), we have picked out a very improbable set of paths.
Let 4 be any weak limit of 2, as ¢ — 0. The main question, on which I
have made no progress, is this: is a typical sample path of the A process
sufficiently bigger than a Wiener path so that two independent sample
paths of the 4 process have a nonzero probability of intersecting? The
Wiener path itself in dimension 4 just fails, by a logarithmically
divergent integral, to have positive capacity, so there are grounds for
optimism that the self-repulsion produced by avoiding near loops

thickens the path sufficiently to make possible a local interaction in
dimension 4.

Note added in proof: This chapter was written before the remarkable
results of Aizenman [9] and Fréhlich [10] appeared. These results
dampen one’s optimism about the speculations made here, but do not
eliminate the need for more results about polymer measures in all
dimensions.
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