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PREFACE

Since the publication of the first edition of this book, the application
of the theory of plates and shells in practice has widened considerably,
and some new methods have been introduced into the theory. To take
these facts into consideration, we have had to make many changes and
additions. The principal additions are (1) an article on deflection of
plates due to transverse shear, (2) an article on stress concentrations
around a circular hole in a bent plate, (3) a chapter on bending of plates
resting on an elastic foundation, (4) a chapter on bending of anisotropic
plates, and (5) a chapter reviewing certain special and approximate
methods used in plate analysis. We have also expanded the chapter on
large deflections of plates, adding several new cases of plates of variable
thickness and some numerical tables facilitating plate analysis.

In the part of the book dealing with the theory of shells, we limited
ourselves to the addition of the stress-function method in the membrane
theory of shells and some minor additions in the flexural theory of shells.

The theory of shells has been developing rapidly in recent years, and
several new books have appeared in this field. Since it was not feasible
for us to discuss these new developments in detail, we have merely referred
to the new bibliography, in which persons specially interested in this field
will find the necessary information.

8. Timoshenko
S. Woinowsky-Krieger
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NOTATION

Rectangular coordinates
Polar coordinates
Radii of curvature of the middle surface of a plate in zz and yz planes,
respectively
Thickness of a plate or a shell
Intensity of a continuously distributed load
Pressure
Single load
Weight per unit volume
Normal components of stress parallel to z, y, and z axes
Normal component of stress parallel to n direction
Radial stress in polar coordinates
Tangential stress in polar coordinates
Shearing stress
Shearing stress components in rectangular coordinates
Components of displacements
Unit elongation
Unit elongations in z, y, and z directions
Radial unit elongation in polar coordinates
Tangential unit elongation in polar coordinates
Unit elongations of a shell in meridional direction and in the direction
of parallel circle, respectively
Shearing strain components in rectangular coordinates
Shearing strain in polar coordinates
Modulus of elasticity in tension and compression
Modulus of elasticity in shear
Poisson’s ratio
Strain energy
Flexural rigidity of a plate or shell
Bending moments per unit length of sections of a plate perpendicular
to z and y axes, respectively
Twisting moment per unit length of section of a plate perpendicular
to z axis
Bending and twisting moments per unit length of a section of a plate
perpendicular to n direction
Shearing forces parallel to z axis per unit length of sections of a plate
perpendicular to z and y axes, respectively
Shearing force parallel to z axis per unit length of section of a plate
perpendicular to n direction
Normal forces per unit length of sections of a plate perpendicular to
z and y directions, respectively
xiii
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NOTATION

Shearing force in direction of y axis per unit length of section of a plate
perpendicular to z axis

Radial, tangential, and twisting moments when using polar coordinates
Radial and tangential shearing forces

Normal forces per unit length in radial and tangential directions
Radii of curvature of a shell in the form of a surface of revolution in
meridional plane and in the normal plane perpendicular to meridian,
respectively

Changes of curvature of a shell in meridional plane and in the plane
perpendicular to meridian, respectively

Twist of a shell

Components of the intensity of the external load on a shell, parallel to
z, y, and z axes, respectively

Membrane forces per unit length of principal normal sections of a shell
Bending moments in a shell per unit length of meridional section and a
section perpendicular to meridian, respectively

Changes of curvature of a cylindrical shell in axial plane and in a plane
perpendicular to the axis, respectively

Membrane forces per unit length of axial section and a section perpen-
dicular tofthe axis of a cylindrical shell

Bending moments per unit length of axial section and a section perpen-
dicular to the axis of a cylindrical shell, respectively

Twisting moment per unit length of an axial section of a cylindrical
shell

Shearing forces parallel to z axis per unit length of an axial section and
a section perpendicular to the axis of a cylindrical shell, respectively
Natural logarithm

Common logarithm
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INTRODUCTION

The bending properties of a plate depend greatly on its thickness as
compared with its other dimensions. In the following discussion, we.
shall distinguish between three kinds of plates: (1) thin plates with small
deflections, (2) thin plates with large deflections, (3) thick plates.

Thin Plates with Small Deflection. 1f deflections w of a plate are small
in comparison with its thickness &, a very satisfactory approximate theory
of bending of the plate by lateral loads can be developed by making the
following assumptions:

1. There is no deformation in the middle plane of the plate. This
plane remains neutral during bending.

2. Points of the plate lying initially on a normal-to-the-middle plane
of the plate remain on the normal-to-the-middle surface of the plate after
bending.

3. The normal stresses in the direction transverse to the plate can be
disregarded.

Using these assumptions, all stress components can be expressed by
deflection w of the plate, which is a function of the two coordinates in
the plane of the plate. This function has to satisfy a linear partial
differential equation, which, together with the boundary conditions, com-
pletely defines w. Thus the solution of this equation gives all necessary
information for calculating stresses at any point of the plate.

The second assumption is equivalent to the disregard of the effect of
shear forces on the deflection of plates. This assumption is usually satis-
factory, but in some cases (for example, in the case of holes in a plate)
the effect of shear becomes important and some corrections in the theory
of thin plates should be introduced (see Art. 39).

If, in addition to lateral loads, there are external forces acting in the
middle plane of the plate, the first assumption does not hold any more,
and it is necessary to take into consideration the effect on bending of the
plate of the stresses acting in the middle plane of the plate. This can be
done by introducing some additional terms into the above-mentioned
differential equation of plates (see Art. 90).

1



2 THEORY OF PLATES AND SHELLS

Thin Plates with Large Deflection. The first assumption is completely
satisfied only if a plate is bent into a developable surface. In other cases
bending of a plate is accompanied by strain in the middle plane, but
calculations show that the corresponding stresses in the middle plane are
negligible if the deflections of the plate are small in comparison with its
thickness. If the deflections are not small, these supplementary stresses
must be taken into consideration in deriving the differential equation of
plates. In this way we obtain nonlinear equations and the solution of the
problem becomes much more complicated (see Art. 96). In the case of
large deflections we have also to distinguish between immovable edges
and edges free to move in the plane of the plate, which may have a con-
siderable bearing upon the magnitude of deflections and stresses of the
plate (see Arts. 99, 100). Owing to the curvature of the deformed middle
plane of the plate, the supplementary tensile stresses, which predominate,
act in opposition to the given lateral load; thus, the given load is now
transmitted partly by the flexural rigidity and partly by a membrane
action of the plate. Consequently, very thin plates with negligible
resistance to bending behave as membranes, except perhaps for a narrow
edge zone where bending may occur because of the boundary conditions
imposed on the plate.

The case of a plate bent into a developable, in particular into a cylindri-
cal, surface should be considered as an exception. The deflections of
such a plate may be of the order of its thickness without necessarily pro-
ducing membrane stresses and without affecting the linear character of
the theory of bending. Membrane stresses would, however, arise in such
a plate if its edges are immovable in its plane and the deflections are
sufficiently large (see Art. 2). Therefore, in “plates with small deflec-
tion” membrane forces caused by edges immovable in the plane of the
plate can be practically disregarded.

Thick Plates. The approximate theories of thin plates, discussed
above, become unreliable in the case of plates of considerable thickness,
especially in the case of highly concentrated loads. In such a case the
thick-plate theory should be applied. This theory considers the prob-
lem of plates as a three-dimensional problem of elasticity. The stress
analysis becomes, consequently, more involved and, up to now, the prob-
lem is completely solved only for a few particular cases. Using this
analysis, the necessary corrections to the thin-plate theory at the points of
concentrated loads can be introduced.

The main suppositions of the theory of thin plates also form the basis
for the usual theory of thin shells. There exists, however, a substantial
difference in the behavior of plates and shells under the action of external
loading. The static equilibrium of a plate element under a lateral load
is only possible by action of bending and twisting moments, wsually



INTRODUCTION 3

accompanied by shearing forces, while a shell, in general, is able to trans-
mit the surface load by ‘“membrane” stresses which act parallel to the
tangential plane at a given point of the middle surface and are distributed
uniformly over the thickness of the shell. This property of shells makes
them, as a rule, a much more rigid and a more economical structure than
a plate would be under the same conditions.

In principle, the membrane forces are independent of bending and are
wholly defined by the conditions of static equilibrium. The methods of
determination of these forces represent the so-called ‘“membrane theory
of shells.” However, the reactive forces and deformation obtained by
the use of the membrane theory at the shell’s boundary usually become
incompatible with the actual boundary conditions. To remove this dis-
crepancy the bending of the shell in the edge zone has to be considered,
which may affect slightly the magnitude of initially calculated membrane
forces. This bending, however, usually has a very localized! character
and may be calculated on the basis of the same assumptions which were
used in the case of small deflections. of thin plates. But there are prob-
lems, especially those concerning the elastic stability of shells, in which
the assumption of small deflections should be discontinued and the ‘‘large-
deflection theory’’ should be used.

If the thickness of a shell is comparable to the radii of curvature, or
if we consider stresses near the concentrated forces, a more rigorous
theory, similar to the thick-plate theory, should be applied.

1 There are some kinds of shells, especially those with a negative gaussian curva-
ture, which provide us with a lot of exceptions. In the case of developable surfaces
such as cylinders or cones, large deflection without strain of the middle surface is
possible, and, in some cases, membrane stresses can be neglected and consideration
of the bending stresses alone may be sufficient.



CHAPTER 1

BENDING OF LONG RECTANGULAR PLATES TO A
CYLINDRICAL SURFACE

1. Differential Equation for Cylindrical Bending of Plates. We shall
begin the theory of bending of plates with the simple problem of the
bending of a long rectangular plate that is subjected to a transverse load
that does not vary along the length of the plate. The deflected surface
of a portion of such a plate at a considerable distance from the ends!
can be assumed cylindrical, with the axis of the cylinder parallel to the
length of the plate. We can therefore restrict ourselves to the investi-
gation of the bending of an elemental strip cut from the plate by two
planes perpendicular to the length of the plate and a unit distance (say
1 in.) apart. The deflection of this strip is given by a differential equa-
tion which is similar to the deflection
equation of a bent beam.

To obtain the equation for the de-
flection, we consider a plate of uni-
form thickness, equal to h, and take
the zy plane as the middle plane of
the plate before loading, i.e., as the
plane midway between the faces of
the plate. -Let the y axis coincide with one of the longitudinal edges
of the plate and let the positive direction of the z axis be downward,
as shown in Fig. 1. Then if the width of the plate is denoted by /, the
elemental strip may be considered as a bar of rectangular cross section
which has a length of I and a depth of k. In calculating the bending
stresses in such a bar we assume, as in the ordinary theory of beams,
that cross sections of the bar remain plane during bending, so that they
undergo only a rotation with respect to their neutral axes. If no normal
forces are applied to the end sections of the bar, the neutral surface of
the bar coincides with the middle surface of the plate, and the unit
elongation of a fiber parallel to the z axis is proportional to its distance z

F16. 1

1 The relation between the length and the width of a plate in order that the maxi-
mum stress may approximate that in an infinitely long plate is discussed later; see
pp. 118 and 125.

4



BENDING TO A CYLINDRICAL SURFACE 5

from the middle surface. The curvature of the deflection curve can be
taken equal to —d%w/dr?, where w, the deflection of the bar in the z
direction, is assumed to be small compared with the length of the bar I.
The unit elongation e. of a fiber at a distance z from the middie surface
(Fig. 2) is then —z d*w/dz®.

Making use of Hooke’s law, the unit elonga-
tions ¢, and ¢, in terms of the normal stresses |
. and o, acting on the element shown shaded 2
in Fig. 2a are

oy (a)
e,:%:_% TYYYREN
a=2-"=9 -
E E NEETEEE]

(b)

where E is the modulus of elasticity of the Fra. 2

material and » is Poisson’s ratio. The lateral
strain in the y direction must be zero in order to maintain continuity
in the plate during bending, from which it follows by the second of the
equations (1) that o, = vo.. Substituting this value in the first of the
equations (1), we obtain

_ (1= e

E
and O = g5 = — +—— 5 )

€.

If the plate is submitted to the action of tensile or compressive forces
acting in the z direction and uniformly distributed along the longitudinal
sides of the plate, the corresponding direct stress must be added to the
stress (2) due to bending.

Having the expression for bending stress o., we obtain by integration
the bending moment in the elemental strip:

h/2 o h/2 Ezﬂ d2w _ Ehl d2w
M= f_m""zd’ = /_,.,21 —FE%E T T Ri-Ad
Introducing the notation
Eh?
120 =% b @)

we represent the equation for the deflection curve of the elemental strip
in the following form:
d2w

D(-E,—= -M 4)

in which the quantity D, taking the place of the quantity EI in the case
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of beams, is called the flexural rigidity of the plate. It is seen that the
calculation of deflections of the plate reduces to the integration of Eq. (4),
which has the same form as the differential equation for deflection of
beams. If there is only a lateral load acting on the plate and the edges
are free to approach each other as deflection occurs, the expression for
the bending moment M can be readily derived, and the deflection curve
is then obtained by integrating Eq. (4). In practice the problem is more
complicated, since the plate is usually attached to the boundary and its
edges are not free to move. Such a method of support sets up tensile
reactions along the edges as soon as deflection takes place. These reac-
tions depend on the magnitude of the deflection and affect the magnitude
of the bending moment M entering in Eq. (4). The problem reduces to
the investigation of bending of an elemental strip submitted to the action
of a lateral load and also an axial force which depends on the deflection
of the strip.! In the following we consider this problem for the particular
case of uniform load acting on a plate and for various conditions along
the edges.

2. Cylindrical Bending of Uniformly Loaded Rectangular Plates with
Simply Supported Edges. Let us consider a uniformly loaded long rec-
tangular plate with longitudinal edges which are free to rotate but can-
not move toward each other during bending. An elemental strip cut out

Fi1G. 3

from this plate, as shown in Fig. 1, is in the condition of a uniformly
loaded bar submitted to the action of an axial force S (Fig. 3). The
magnitude of S is such as to prevent the ends of the bar from moving
along the z axis. Denoting by ¢ the intensity of the uniform load, the
bending moment at any cross section of the strip is

4. _ e
=37 5 Sw

1 In such a form the problem was first discussed by 1. G. Boobnov; see the English
translation of his work in Trans. Inst. Naval Architects, vol. 44, p. 15, 1902, and his
“Theory of Structure of Ships,” vol. 2, p. 545, St. Petersburg, 1914. See also the
paper by Stewart Way presented at the National Meeting of Applied Mechanics,
ASME, New Haven, Conn., June, 1932; from this paper are taken the curves used in
Arts. 2 and 3.



