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Preface

In the past decade or so, there have been fascinating developments in multimedia rep-
resentation and communications. First of all, it has become very clear that all aspects
of media are “going digital”; from representation to transmission, from processing to
retrieval, from studio to home. Second, there have been significant advances in digital
multimedia compression and communication algorithms, which make it possible to
deliver high-quality video at relatively low bit rates in today’s networks. Third, the
advancement in VLSI technologies has enabled sophisticated software to be imple-
mented in a cost-effective manner. Last but not least, the establishment of half a dozen
international standards by ISO/MPEG and ITU-T laid the common groundwork for
different vendors and content providers.

At the same time, the explosive growth in wireless and networking technology
has profoundly changed the global communications infrastructure. It is the confluence
of wireless, multimedia, and networking that will fundamentally change the way people
conduct business and communicate with each other. The future computing and com-
munications infrastructure will be empowered by virtually unlimited bandwidth, full
connectivity, high mobility, and rich multimedia capability.

As multimedia becomes more pervasive, the boundaries between video, graphics,
computer vision, multimedia database, and computer networking start to blur, making
video processing an exciting field with input from many disciplines. Today, video
processing lies at the core of multimedia. Among the many technologies involved, video
coding and its standardization are definitely the key enablers of these developments.
This book covers the fundamental theory and techniques for digital video processing,
with a focus on video coding and communications. It is intended as a textbook for a
graduate-level course on video processing, as well as a reference or self-study text for

xxi
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researchers and engineers. In selecting the topics to cover, we have tried to achieve
a balance between providing a solid theoretical foundation and presenting complex
system issues in real video systems.

SYNOPSIS

Chapter 1 gives a broad overview of video technology, from analog color TV sys-
tem to digital video. Chapter 2 delineates the analytical framework for video analysis
in the frequency domain, and describes characteristics of the human visual system.
Chapters 3-12 focus on several very important sub-topics in digital video technology.
Chapters 3 and 4 consider how a continuous-space video signal can be sampled to
retain the maximum perceivable information within the affordable data rate, and how
video can be converted from one format to another. Chapter 5 presents models for
the various components involved in forming a video signal, including the camera, the
illumination source, the imaged objects and the scene composition. Models for the
three-dimensional (3-D) motions of the camera and objects, as well as their projections
onto the two-dimensional (2-D) image plane, are discussed at length, because these
models are the foundation for developing motion estimation algorithms, which are
the subjects of Chapters 6 and 7. Chapter 6 focuses on 2-D motion estimation, which
is a critical component in modern video coders. It is also a necessary preprocessing
step for 3-D motion estimation. We provide both the fundamental principles governing
2-D motion estimation, and practical algorithms based on different 2-D motion repre-
sentations. Chapter 7 considers 3-D motion estimation, which is required for various
computer vision applications, and can also help improve the efficiency of video coding.

Chapters 8-11 are devoted to the subject of video coding. Chapter 8 introduces
the fundamental theory and techniques for source coding, including information theory
bounds for both lossless and lossy coding, binary encoding methods, and scalar and
vector quantization. Chapter 9 focuses on waveform-based methods (including trans-
form and predictive coding), and introduces the block-based hybrid coding framework,
which is the core of all international video coding standards. Chapter 10 discusses
content-dependent coding, which has the potential of achieving extremely high com-
pression ratios by making use of knowledge of scene content. Chapter 11 presents
scalable coding methods, which are well-suited for video streaming and broadcast-
ing applications, where the intended recipients have varying network connections and
computing powers. Chapter 12 introduces stereoscopic and multiview video processing
techniques, including disparity estimation and coding of such sequences.

Chapters 13-15 cover system-level issues in video communications. Chapter 13
introduces the H.261, H.263, MPEG-1, MPEG-2, and MPEG-4 standards for video
coding, comparing their intended applications and relative performance. These stan-
dards integrate many of the coding techniques discussed in Chapters 8-11. The MPEG-7
standard for multimedia content description is also briefly described. Chapter 14 reviews
techniques for combating transmission errors in video communication systems, and
also describes the requirements of different video applications, and the characteristics
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of various networks. As an example of a practical video communication system, we
end the text with a chapter devoted to video streaming over the Internet and wireless
network. Chapter 15 discusses the requirements and representative solutions for the
major subcomponents of a streaming system.

SUGGESTED USE FOR INSTRUCTION AND SELF-STUDY

As prerequisites, students are assumed to have finished undergraduate courses in signals
and systems, communications, probability, and preferably a course in image process-
ing. For a one-semester course focusing on video coding and communications, we
recommend covering the two beginning chapters, followed by video modeling (Chap-
ter 5), 2-D motion estimation (Chapter 6), video coding (Chapters 8-11), standards
(Chapter 13), error control (Chapter 14) and video streaming systems (Chapter 15).
On the other hand, for a course on general video processing, the first nine chapters, in-
cluding the introduction (Chapter 1), frequency domain analysis (Chapter 2), sampling
and sampling rate conversion (Chapters 3 and 4), video modeling (Chapter 5), motion
estimation (Chapters 6 and 7), and basic video coding techniques (Chapters 8 and 9),
plus selected topics from Chapters 10-13 (content-dependent coding, scalable coding,
stereo, and video coding standards) may be appropriate. In either case, Chapter 8 may
be skipped or only briefly reviewed if the students have finished a prior course on
source coding. Chapters 7 (3-D motion estimation), 10 (content-dependent coding),
11 (scalable coding), 12 (stereo), 14 (error-control), and 15 (video streaming) may also
be left for an advanced course in video, after covering the other chapters in a first course
in video. In all cases, sections denoted by asterisks (*) may be skipped or left for further
exploration by advanced students.

Problems are provided at the end of Chapters 1-14 for self-study or as home-
work assignments for classroom use. Appendix D gives answers to selected problems.
The website for this book (www.prenhall.com/wang) provides MATLAB scripts used to
generate some of the plots in the figures. Instructors may modify these scripts to generate
similar examples. The scripts may also help students to understand the underlying
operations. Sample video sequences can be downloaded from the website, so that
students can evaluate the performance of different algorithms on real sequences. Some
compressed sequences using standard algorithms are also included, to enable instructors
to demonstrate coding artifacts at different rates by different techniques.
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Glossary of Notations

Mathematical notation

[A]

a, A
[A]T, aT
[A]”!
det[A]
llall

RK

cK

ZK

F
F

Boldface upper case letters in roman with square bracket represent matrices
Boldface lower or upper case letters in roman represent vectors

Transpose of matrices or vectors

Inverse of matrix [A]

Determinant of matrix [A]

I,-norm of vector a

K-D real space

K-D complex space

K-D integer space

Upper case letters in script represent random variables

Boldface upper case letters in script represent random vectors, F =
[Fi. F>, ..., Fn]T, or arandom sequence, F ={F|, F>,...,}

Expectation operation

For all

Representing a lattice

Reciprocal lattice of A

Density of lattice A.

Generating matrix for A

Generating matrix for A*, [U] = ([V]7)"!
Voronoi cell of A

XXV



xxvi Glossary of Notations

Video representation

X=[X,7 27 Coordinate of a point in the 3-D space: X, Y, and Z represent the horizontal,
vertical, and depth positions, respectively

x =[x, y]7 Coordinate of a pixel in the 2-D image plane: x and y represent the horizontal and
vertical positions, respectively

t Time index, either continuous or discrete

m = [m, n)” Discrete coordinate of a pixel in a 2-D digital image: m and n represent the column
and row indices of pixels, respectively

k Discrete time index (i.e., frame number)

Yx,y,1) Image value at pixel location x and frame time ¢ of a video sequence. The image

Vi(x, y), ¥2(x, y)
Yp(x,y,8)

¥ (x, y)

Yo(x, y, 1)
Y(m,n, k)

vy

Ax, Ay, A,

f-\\l

fs.xv fs,y

R

value could be a scalar representing the luminance or a vector representing three
color components. This notation is used to refer to a video signal in general, defined
over either a continuous or discrete space

Representing the anchor and target frames involved in 2-D motion estimation
The predicted image of frame ¥ (x, y, 7) in video coding
The reference frame used to predict a frame
Image function in view v in a multiview system
Image value at pixel location (m, n) and frame time & in a digital video

. . _ 3y 0yqT
Spatial gradient of ¥ (x, y, 1), Vy = [3£, a_y]
Sampling interval in horizontal, vertical, and temporal directions, respectively
Sampling frequency in temporal direction or frame rate, f;, = 1/A,, measured
in frames/s (fps) or Hz
Sampling frequencies in horizontal and vertical directions, f;x = 1/A,, f;,y =
1/A,, commonly measured in pixels/picture-width and pixels/picture-height
Bitrate, specified in bits/s (bps) for a video sequence, bits/pixel (bpp) for an image,
or bits/sample for a general discrete source

Frequency-domain representations

Jeo Sy
fo

fi

f

WYelfe, fyo fD)
s (fe, Sy, f1)
Wal(fer fyo 1)
Y (fer Sy, f2)

Horizontal and vertical frequencies, usually measured in cycles/degree (cpd)
Angular frequencies, measured in cpd

Temporal frequency, measured in cycles/s (cps) or Hz

Frequency index in a multidimensional space. For video signals, f = [ f;, I i)
Continuous-space Fourier transform (CSFT) of ¥ (x, y, 1)

Sampled-space Fourier transform (SSFT) of ¥ (x, y, t)

Discrete-space Fourier transform (DSFT) of ¥ (m, n, k)

Generally used to refer to the Fourier transform of a video signal; can be CSFT,
SSFT, or DSFT
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Motion/disparity/camera characterization

D(X, 11, 1)

dx, 11, 12)

w(x)
B, 0y, 6,

[R]

3-D motion vector of point X from time ¢, to time #,. When the underlying ¢, and
1, are clear, we simply write D(X). The X-, Y-, and Z-components of D is denoted
by Dy, Dy, D;

2-D motion vector of pixel x from time ¢, to time #,. When thc underlying ¢,, #; are
clear, we simply write d(x). The x—and y—components of d are denoted by d, and
d,. d(x; a) represents the motion field as a function of motion parameter vector a.
The same notation d(x) is also used to represent the disparity vector between two
views in a stereo sequence

The mapping function between two image frames, w(x) = x + d(x). w(x; a)
represents the mapping function as a function of motion parameters a

Camera or object rotation angles with respect to X, ¥, and Z axes, respectively,
of a predefined world coordinate

The rotation matrix of a camera or object in 3-D

The translation vector of a camera or object in 3-D, T = [T, T,, T.]"

Camera focal length

Camera center in the world coordinate
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