— Neill Graham



Learning




About C

Preface

This book is an introduction to C for readers who are already
acquainted with at least one programming language (which will
probably be Pascal). The only reason for such a prerequisite is that
this book focuses more on the details of C than on the elements of
programming. No background is assumed in any other area of com-
puting, such as computer science or system programming. Important
computing concepts, such as variables and pointers, are reviewed
briefly before being used, a practice for which we ask the indulgence
of readers with more experience.

C is now the most popular language for professional software
development on minicomputers and microcomputers. Many pro-
grammers who formerly used assembly language or Pascal have
switched to C, and some existing software products have actually
been translated into C from Pascal or assembly language.

Although C provides most of the features one expects of a higher-
level language, it also offers the low-level access to hardware and
software that is characteristic of assembly language (and that is
required for all system programming and much application pro-
gramming). Some languages that offer this low-level access are so
hardware specific that they can be used on only one kind of com-
puter (assembly language is, of course, the prime example). C seems
to have hit the right level of generality in that it offers the low-level
access that programmers need yet can be (and has been) imple-
mented on a wide variety of main frames, minicomputers, and
microcomputers.



About This Book

A recently developed ANSI (American National Standards Insti-
tute) standard for C will make it even easier to port (move) C pro-
grams from one computer to another. The computer industry is
moving toward the ANSI version of C as fast as possible, consider-
ing the amount of existing software that is written in older versions.
To avoid confusion, this book covers only ANSI C and the style of
programming that is recommeded for it. Readers who have mastered
ANSI C should have little difficulty understanding the programming
styles used in older versions of the language.

Because C does not put the programmer in a straigjacket, pro-
grammers have more opportunities for making errors, a fact for
which the language is often criticized. Yet powerful tools always
require more care in their use than less capable ones. A high-
performance automobile or airplane is far more demanding of the
driver or pilot than a lower-performance machine. The solution is to
make sure that driver, pilot, and programmer are properly trained in
the use of their respective tools, including any necessary safety pre-
cautions. Like a conscientious driving or flying instructor, this book
points out a number of areas in which the careless student is likely to
get into trouble.

Newcomers to the language are sometimes intimidated by C pro-
grams, which look so different from programs in Pascal-style lan-
guages. Yet these differences are often superficial, reflecting merely
different notations for the same underlying concepts. This book fre-
quently points out the similarity of C constructions to those found
in other languages (without, however, demanding knowledge of any
particular other language).

To get the student writing nontrivial C programs as quickly as
possible, Chapters 1 and 2 focus on those features of C that have
close counterparts in other languages. Only a few of C’s idiosyn-
crasies, including the increment, decrement, and compound assign-
ment operators, are introduced in these chapters. Only two data
types, int and double, are introduced. To heighten the sense of
familiarity, some of the examples and exercises were deliberately
chosen from among such old standbys as Fibonacci’s rabbit problem
and finding the number of grains of wheat paid to the inventor of
chess.

After Chapters 1 and 2 have brought the reader up to speed in C
programming, Chapter 3 takes some time to explore some details of
the language. Following a brief introduction to hardware memory

PREFACE



Acknowledgments

organization (which influences so much of C), the remaining arith-
mietic data types are introduced. Conversions between arithmetic
types are also introduced, as are the additional conversion specifiers
that enable scanf () and printf () to handle the types intro-
duced in this chapter. In addition to the topics mentioned in the
chapter titles, most of the remaining chapters have sections devoted
to filling in background details about some aspects of the language.

Once we get beyond the elements of C, our attention invariably
shifts to pointers and arrays, which are central to all advanced appli-
cations of the language. Chapter 4 introduces these two closely
related concepts, but focuses mainly on array processing. Chapter 5
introduces pointer arithmetic and string processing, with some of the
string library functions providing examples of both. Although the
main topic of Chapter 6 is structures, pointers and arrays are never
far from our thoughts.

So far, we have only used the standard input, output, and error
streams, although file redirection has been suggested for systems that
have that capability. Chapter 7 explores the C model of files and
streams and shows the student how to open files in various modes,
obtain file names from command-line parameters, read and write
binary data, and use positioning functions for direct access. Func-
tions with varying numbers of arguments and conditional preproces-
sor directives are the two “extra’ topics discussed in this chapter.

Four appendices provide additional information. Appendix 1 lists
C keywords and Appendix 2 gives the precedence, associativity, and
arity (number of operands) of C operators. Appendix 3 describes a
typical integrated development environment, in the hopes that new-
comers will prefer this modern tool to the old-fashioned command-
line compilers so beloved by many current C programmers.
Appendix 4 introduces the memory models used with MS-DQOS, one of
two most popular operating systems for C programming (the other is
UNIX, the operating system under which C was developed).

For Further Reading describes some sources of additional infor-
mation, including the all-important ANSI standard.

I wish to thank the following for their helpful comments on the
manuscript: Timothy J. McGuire, Texas A&M University; Greg M.
Perry, Tulsa Junior College; Paul W. Ross, Millersville University,
Millersville, Penna.; Vincent F. Russo, Purdue University; and
Phillip C-Y. Sheu, Rutgers University.

PREFACE xi



Contents

PREFACE, 1X

1

Getting Started

FUNCTIONS, 1
THE HELLO~WORLD PROGRAM, 2
Comments, 2
Header Files, Preprocessing, and #include
Directives, 3
Defining main (), 4
Strings, Escape Sequences, and calling
printf(),5
EDITING, COMPILING, AND LINKING, 7
IDENTIFIERS, 9
DEFINING, DECLARING, AND CALLING
FUNCTIONS, 10
VALUES, VARIABLES, AND EXPRESSIONS, 12
Types and Values, 12
Variables and Assignment, 13
Arithmetic Operators, 15
Expression Evaluation, 16
More About Variables and Assignments, 18
Side Effects, 19
Dangers of Side Effects, 20
INPUT AND QUTPUT, 21
Ouwtput with print £ (}, 21
Field Widths, Justification, and Precision, 22
Inpur with scanf (), 24

Computing Areas and Perimeters, 25
NAMED CONSTANTS AND PREPROCESSOR
MACROS, 27
FUNCTIONS WITH ARGUMENTS, 30
EXERCISES, 34

2

Control Statements and Related Operators

LOGICAL VALUES AND RELATIONAL OPERATORS,
37
ITERATION, 38
The while Statement, 39
The do Statement, 40
The fox Statement, 41
INCREMENT, DECREMENT, AND COMPOUND
ASSIGNMENT OPERATORS, 42
Compound Assignment Operators, 42
The Increment and Decrement Operators, 44
EXAMPLES USING ITERATION, 46 )
Program for Rabbit Problem, 47
Program for Inverse Rabbit Problem, 48
Program_for Computing Amount in Bank
Account, 49
SELECTION STATEMENTS AND THE CONDITIONAL
OPERATOR, 51
The 1L f and 1 f-else Statements, 51
Nested 1 £ and 1£-else Statements, 52
The switch and break Statements, 54



The Conditional Operator, 57
EXAMPLES USING SELECTION STATEMENTS, 59
Computing Gross Wages, 59
Redirection, 61
Responding to Menu Selections, 62
LOGICAL OPERATORS, 67
Short-Circuit Evaluation, 68
Classifying Triangles, 68
THE COMMA OPERATOR, 70
EXERCISES, 72

3

Types and Conversions

BITS, BYTES, AND ADDRESSES, 75
Byte-Oriented Memory, 75
Addyesses, 76
Alignment, 76
Byte Order, 76
Signed and Unsigned Integers, 77
Correspondence Between Signed and Unsigned

Values, 78

BASIC ARITHMETIC TYPES, 79
Basic Integer Types, 79
Integer Constants, 81
Multibyte Characters, 87
Floating Types, 88

DEFINING AND NAMING TYPES, 88
Type Definitions, 89
Type size_t and the sizeof Operator, 89
Enumerated Types, 91
Bitfields, 93

TYPE CONVERSIONS, 93
Promotions, 94
Balancing, 94
Assignment and Initialization, 95
DPassing Arguments to Fuuctions, 97
Type Casts, 98

MORE ABOUT FORMAT STRINGS, 99
Flags forprint £ (), 100
Field Width and Precision, 101
Printing Characters, 101

vi CONTENTS

Printing Integers, 102
Printing Floating-Point Numbers, 104
Formar Strings for scanf (), 105
EXAMPLE PROGRAMS, 107
EXERCISES, 112

4

Arrays and Pointers

LVALUES AND OBJECTS, 115
THE QUALIFIERS const AND volatile, 116
ONE-DIMENSIONAL ARRAYS, 117
Array Names, 120
POINTERS, 121
The Indirection Operator, 121
Using the Address-Of Operator, 122
Using const in Pointer Declarations, 123
Pointers and Arrays, 124
Pointers and Function Arguments, 125
Pointers to Functions, 128
Multiway Selection with Function Pointers, 129
More Complicated Declarations, 130
Additional Properties of Pointers, 131
MULTIDIMENSIONAL ARRAYS, 137
MORE ABOUT IDENTIEIERS AND OBJECTS, 138
Name Spaces, 138
Scape and Visibility of Identifiers, 139
Storage Durations of Objects, 141
Storage Duration and Initialization, 142
Linkage of Identifiers, 143
A CASE STUDY, 145
craps.c, 147
game.c, 148
random.c, 152
Compiling and Linking, 154
EXERCISES, 154

5

Pointers and Strings

POINTER ARITHMETIC, 157
STRINGS, 161



FUNCTIONS FOR STRING PROCESSING, 164 7
INPUT AND OUTPUT OF CHARACTERS AND
STRINGS, 169
Reading Characters and Strings with scanf (),
170
Input and Output for Arbitrary Streams, 172
Functions for Character Input and Outpur, 173
Ervor Returns for print £ () and scanf (},
175
ctype . h and Uppercasing Letters, 175
Functions for String Input and Output, 177
Trismming Whitespace, 179
DYNAMIC MEMORY MANAGEMENT, 180
Sorting Strings, 183
FUNCTION MACROS, 190
EXERCISES, 192

Streams and Files

PROCESSING STREAMS AND FILES, 241
Files, 241
Streams, 242
Streams vs. Handles, 244
Opening and Closing Files, 245
Using Program Parameters, 248
Reading and Writing Binary Data, 250
Load and Save-As Commands for storel.c
and info.c, 253
File Manipulation and a Save Operation for
info.c, 259
Direct Access, 262
Controlling Buffering, 269
More About Error Handling, 269
6 Reading from and Whriting to Strings, 271
FUNCTIONS WITH VARYING NUMBERS OF
ARGUMENTS, 272
CONDITIONAL DIRECTIVES, 277
EXERCISES, 280

Structures, Unions,
Bitfields, and Bitwise Operators

STRUCTURES, 195
Example: A Complex-Nusmber Module, 198
STRUCTURES, ARRAYS, AND POINTERS, 203
Structures and Pointers, 205
EXAMPLE: INFORMATION RETRIEVAL, 206
Header File store . h, 206
Module storel . h, 207
Module info.c, 216
SELF-REFERENTIAL STRUCTURES AND LINKED
LISTS, 219
EXAMPLE; INFORMATION RETRIEVAL REVISITED,
221
Binary Trees, 224
Module store2.c, 226
UNIONS, 232
BITFIELDS, 235
OPERATORS FOR BIT MANIPULATION, 236
Bitwise Logical Operators, 237
Shift Operators, 238
EXERCISES, 239

Appendix 1
KEYWORDS, 283

Appendix 2
OPERATORS, PRECEDENCE, AND ASSOCIATIVITY,
284

Appendix 3
INTEGRATED DEVELOPMENT ENVIRONMENTS,
287

Appendix 4
MS-DOS MEMORY MODELS, 295

GLOSSARY, 298

FOR FURTHER READING, 309
INDEX, 311

CONTENTS vii



E BEGIN WITH the basic elements found in most pro-

gramming languages: identifiers, types, values, variables,
functions, expressions, and provisions for input and output. The C
versions of these are largely similar to their counterparts in other lan-
guages. The greatest differences are in the input-output facilities,
which vary considerably from language to language.

FUNCTIONS

A C program is a collection of functions, which play the same roles
that functions, procedures, and subroutines do in other languages.
When we run a program, the system first calls the functionmain (),
which every C program must define. Function main (), in turn,
can call other functions, which can call still other functions, and so
on as needed to accomplish the purpose of the program. Thus func-
tion main () plays the same role in C as the “main program” does
in some other languages.

As can be seen in the previous paragraph, this book uses a dis-
tinctive typeface for elements of a C program, such as main ().
Also, the name of a function is followed by a pair of parentheses. The
latter convention lets us see at a glance that names such asmain{(),
printf (), and scanf () represent functions rather than other
elements of a C program.

In some other languages, such as Pascal, Basic, and Fortran, the
term function is reserved for subprograms that return a value. Other
terms, such as procedure and subroutine, are used for subprograms that
do not return a value. In C, however, all such subprograms are



known as functions. The definition of each individual function
determines whether or not it returns a value.

To save us from having to “reinvent the wheel” every time we
write a program, all C implementations come with a large library of
predefined functions. Additional libraries can be created by the pro-
grammer or purchased from third-party developers.

THE HELLO-
WORLD
PROGRAM

Comments

It is traditional to begin the study of C with a program that prints
the message “Hello, world!” Listing 1-1 shows our version of the
hello-world program. Working through this listing line-by-line will
acquaint us with the structure of a C program.

The first two lines of Listing 1-1 are comments, which explain the
program to human readers but are ignored by the compiler. In C,
comments are enclosed by the symbols /* and */:

/* This is a comment */
A comment can extend over several lines:

/* Now is the time
for all good programmers
to use more and better comments */

Nested comments—comments within comments—are not allowed.
The following will produce one or more error messages:

/* This is an /* invalid */ comment */
Our hello-world program (Listing 1-1) begins with two comments:

/* File hello.c */
/* Say hello to user */

The first comment gives the name of the source file—the disk file in
which the program is stored (Listing 1-1 is just a printout of this disk
file). Although the reader seldom actually needs to know these file
names, mentioning them in comments emphasizes the correspondence
between listings and disk files. Including such comments in your own
programs will help you keep track of which listings go with which files.

The second comment describes briefly what the program does. As
is often done, the comment is phrased as the command we might
give the computer if it could understand English.

1 GETTING STARTED



Listing 1-1

/* File hello.c */
/* Say hello to user */

#include <stdio.h>

int main(void)

{
printf("Hello, world!\n");
return 0;

Header Files, Preprocessing, and #include Directives

Every function must be declared before it is called; the declaration
contains information that the compiler may need to call the function
properly. This requirement applies to library functions as well as
those defined by the programmer.

To help us declare library functions, the C implementation provides
header files containing the necessary declarations for various parts of the
library. For example, the header file math . h contains declarations for
mathematical functions, the header file stdio.h contains declara-
tions for standard input and output functions, and so on. We sometimes
pse the names of the header files to refer to different parts of the library.
We speak of the functions declared inmath. h as the math library, the
functions declared in stdio. h as the stdio library, and so on.

The C compiler provides a simple way of effectively inserting
header files into source files. The first phase of compilation is prepro-
cessing, which manipulates the text read from the source file before
sending it on to the remaining phases of compilation. Some of these
manipulations can be controlled with preprocessing directives, all of
which begin with the symbol #.

An #include directive designates a file whose contents are to
be inserted into the program text. When the preprocessor encoun-
ters an #include directive, it replaces the directive by the contents
of the designated file. This replacement takes place only in the text
that is being passed on to the rest of the compiler. The original
source file and the file that was included both remain unchanged.

The third line of the hello-world program includes the header file
stdio.h: ‘

THE HELLO-WORLD PROGRAM 3



Definingmain ()

#include <stdio.h>

The file stdio.h contains the declaration for printf (), the
library function that the program calls to print the hello-world mes-
sage. Note that the file name is enclosed by a less-than sign and a
greater-than sign, which serve as angle brackets.

When C programmers say that one file incudes another, they
always mean that the one file contains an #include directive that
names the other file. They do nof mean that the one file contains a
copy of the contents of the other file.

~

The remainder of the hello-world program defines the function
main (). A function definition has the following form:

heading

{
declarations (if any)
statements

}

The heading provides the information needed to call the function:
the name of the function, the types of arguments (if any) that it
requires, and the type of value (if any) that it returns.

The heading is followed by the body of the function, which
specifies the action the function will take when it is called. The body
of the function is a block, which is a series of declarations and state-
ments delimited by the braces { and }. The braces play the same role
in C as do the words begin and end in many other languages.

The hello-world program declares main () as follows:

int main(void)

{
printf("Hello, world!'\n");
return 0;

}
The heading
int main{void)

gives the name of the function as main. The void in parentheses
means that the function takes no arguments. The int indicates that
the function returns an integer value (int is the most frequently
used of C’s numerous integer data types).

The body of the function is a block containing two statements:

I GETTING STARTED



{
printf("Hello, world!\n");
return 0;

}

Each statement ends with a semicolon. The first statement, which
calls the library function printf (), will be discussed in more
detail shortly. The second statement causes main() to return a
value of O to the system. The value returned by main () is a return
code that indicates whether the program ran successfully. Customar-
ily, a return code of 0 indicates a successful run.

Because of the special role of main(}, its definition can be
abbreviated somewhat:

main()

{

printf("Hello, world!\n");
}

The full heading int main(void) can be shortened tomain();
the return type defaults to int, and no information is provided about
possible arguments. If the return code is not used by the system,
which is often the case, the return statement also can be omitted.
The abbreviated form, which was standard in pre~ANSI versions of
C, is so widely used that the reader needs to be able to recognize it.
However, we will continue to use the unabbreviated form recom-
mended for ANSI C, and we suggest that the reader do likewise.

Strings, Escape Sequences, and calling printf ()

Pieces of text, such as Hello, world!, are stored as strings. We
can represent a string in a C program by a string literal, which consists of
the characters of the string enclosed in quotation marks. For example,
the message He11o, world! can be represented by the string literal

"Hello, world!"

Some characters that we may wish to include in string literals do
not have conventional graphics such as a, b, and c¢. Such a charac-
ter can be represented by an escape sequence, which consists of a back-
slash, \ , followed by a letter or number representing the character.
A case in point is the newline character, which causes the output device

THE HELLO-WORLD PROGRAM 5



to start a new line. The newline character is represented by the
escape sequence \n. If the string represented by

"Hello, world!\n"

is sent to an output device, the device will print Hello, world!
on the current line, then go to the beginning of the following line.

We call a function by writing the name of the function followed
by a pair of parentheses. The paired parentheses are known as the
function-call operator. Inside the parentheses are listed any argument
values that are to be passed to the function.

The hibrary function printf () is a powerful function for for-
matting and printing output. It can be called with different numbers
of arguments depending on how it is being used. The simplest use of
this function 1s to call it with a single argument, which is a string to
be printed. For example, the function call

printf ("Hello, world!\n")

calls print f () and passes it the string represented by the string lit-
eral "Hello, world!\n". When called, printf () writes the
message Hello, world! and starts a new line.

The functions in stdio.h access input and output devices via
streams. Each stream is connected to a source or destination for data,
such as a keyboard, a display, a printer, or a disk file. Data read from
or written to a stream comes from or goes to the device or file to
which the stream is connected. The function printf () writes to
the standard output stream, stdout, which is normally connected
to the user’s display. By changing this connection (we’ll see how
later), we could send the output from our program to a printer, a disk
file, or even a communcations link rather than to the user’s display.

The preceding function call is a C expression, which could con-
ceivably be part of a larger expression. If we wish to use an expres-
sion as a statement, rather than as part of a larger expression, we con-
vert it to an expression statement by following it with a semicolon. For
example, the hello-world program uses the expression statement

printf("Hello, world!\n");

to print the desired message. An expression statement always ends
with a semicolon, regardless of where it may occur in the program
(such as embedded within another statement).

Note that printf () does not automatically cause the printer
to start a new line after a string has been printed. For example, the
statements

1 GETTING STARTED



printf("abc");
printf(*def");
printf('ghi");

print
abcdefghi

If we wish the strings printed on separate lines, we must include new-
line characters in the string literals:

printf("abc\n");
printf("def\n");
printf("ghi\n");

These statements produce the output

abc
def
ghi

and cause the output device to start a new line after the third line is
printed.

Newline characters can be embedded within a string. For example,
the preceding output can also be produced by the single statement

printf ("abc\ndef\nghi\n");

EDITING,
COMPILING,
AND LINKING

The text of a C program is stored in one or more source files. For
simple programs, such as most of the examples in this book, a single
source file will suffice. For large programming projects, however,
multiple source files are the rule. Different source files contain logi-
cally distinct parts of the program and may have been written by dif-
ferent programmers. Source files are created and revised with the aid
of a text editor.

We use a C compiler to translate each source file into a machine-
coded object file. Each source file is compiled separately. If we need
to make changes in a source file, then only that source file needs to
be recompiled. This is one reason for using multiple source files: it
is generally much faster to recompile one source file than to recom-
pile all the program text for a large project.

The linker combines the object files with one another and with the
code for any library functions called by the program. The output

EDITING, COMPILING, AND LINKING 7



from the linker is an executable file, which contains all the machine
code for the program and is ready to be run on the computer. Even
for a program with only one source file, linking is still needed to
combine the code in the object file with the code for whatever
library functions the program calls.

Unfortunately, the detailed commands for editing, compiling,
and linking vary too much between implementations for us to con-
sider them here. However, it is worth mentioning two different
kinds of implementation: command-line implementations and inte-
grated development environments.

A command-line implementation is so called because each software
tool, such as a text editor, compiler, or linker, must be invoked by
typing an operating system command line. The programmer must
invoke a text editor and use it to create or modify cach source file.
Next, the compiler must be invoked for each source file to translate
it into an object file. The linker is then run to produce the executable
file. Finally, the C program can be run on the computer to see if it
executes properly. If it does not, or if error messages were encoun-
tered in any of the preceding steps, the programmer must return to
the text editor to locate the errors and make necessary corrections.

Many operating systems provide scripting facilities (UNIX scripts,
MS-DOS batch files) that allow new operating system commands to
be defined in terms of existing commands. Command-line imple-
mentations often use these facilities to provide simplified commands
for common situations. For example, there may be a single com-
mand for compiling, linking, and executing a program that has only
one source file. Also, many command-line implementations provide
a make utility, which will automatically compile and link all the
source files in a programming project. The make utility recompiles
only those source files in which changes have been made.

An integrated development environment (IDE) is a single software tool
that can be used for editing, compiling, linking, executing, and debug-
ging C programs. (The term integrated programming environment (IPE) is
also used.) Normally, the IDE serves as a text editor, allowing us to cre-
ate and modify source files. When we are ready to compile, link, or
execute, however, we can do so with commands to the IDE rather
than with operating system command lines. Generally, an IDE will do
whatever work is necessary to carry out our commands. For example,
if we tell it to execute a program, it will first do any compiling and link-
ing necessary to produce an executable file. Like the make utility, the
IDE will recompile only those source files in which changes have been
made, and will relink only if one or more source files had to be recom-

I GETTING STARTED



piled. An online help facility provides easy access to information about
IDE commands, compiler and linker error messages, and the C library.

IDE:s also provide help for debugging. When the compiler discov-
ers errors, the erroneous statements are highlighted on the screen.
During execution, the programmer can monitor the values of
selected variables and can trace the flow of control—the order in
which program statements are executed.

Some old hands at C programming love their command-line
compilers and would rather fight than switch. Newcomers, however,
are urged to explore the power and convenience of integrated devel-
opment environments. A typical microcomputer IDE is described in
Appendix 3.

IDENTIFIERS

As in most other programming languages, C programmers must
devise names for such program elements as variables and functions.
These names, or identifiers, must be formed according to certain rules:

8 An identifier can contain only letters, digits, and the under-
score character, _. Thus amount and hit_count are
valid identifiers but $_amount and employee_# are not.

® An identifier must begin with a letter of the alphabet or an
underscore character. Thus _dos_call is a valid identifier
but 1st_round is not.

B Identifiers that begin with an underscore are reserved for the
implementation and should not be defined by the program-
mer. Thus you should not define an identifier _dos_call,
but you can use it if it is already defined by the implementation.

B An identifier must not be the same as one of the keywords
listed in Appendix 1. Thus int and void are not valid
identifiers, because they are keywords.

® C distinguishes between uppercase and lowercase letters, so
that amount, Amount, and AMOUNT are three different
identifiers.

® Only the first 31 characters of an identifier are significant—
that is, are used in distinguishing one identifier from
another. Thus

very_very_very_long_identifier_1

IDENTIFIERS 9



