Michael Jackson

System
Development

C.A.R. HOARE SERIES EDITOR

SYSTEM
DEVELOPMENT

M. A. JACKSON

Michael Jackson Systems Limited

based on the work of
M. A. JACKSON and J. R. CAMERON

ENGLEWOOD CLIFFS, NEW JERSEY LONDON NEW DELHI
SINGAPORE SYDNEY TOKYO TORONTO WELLINGTON

To Judy, Daniel, Tim, David and Adam

Library of Congress Cataloging in Publication Data
Jackson, Michael, 1936
System development.

Bibliography: p.

Includes index.

1. System design. 1. Title.
QA76.9.888133 003 82619
ISBN 0-13-880328-5 AACR2

British Library Cataloguing in Publication Data
Jackson, Michael

System development.

1. Systems engineering 2. Business

1. Title

658.4'032 TA168

ISBN 0-13-880328-5
© 1983 by PRENTICE-HALL INTERNATIONAL, INC.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of Prentice-Hall International, Inc.

For permission within the United States contact Prentice-Hall Inc., Englewood
Cliffs, N.J. 07632.

ISBN 0-13-880328-5

PRENTICE-HALL INTERNATIONAL INC,, London
PRENTICE-HALL OF AUSTRALIA PTY., LTD., Sydney
PRENTICE-HALL CANADA, INC,, Toronto

PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Dethi
PRENTICE-HALL OF JAPAN, INC,, Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE., LTD,, Singapore
PRENTICE-HALL INC,, Englewood Cliffs, New Jersey
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

Printed in the United States of America

10987654321

Preface

SCOPE OF JSD

This book is about a system development method. The method, known by the acronym
JSD, is a method for specifying and implementing computer systems. We use the
general term ‘development’ to cover a range of activities usually carried out by people
whose job titles are ‘systems analyst’, ‘system designer’, ‘program designer’ or
‘programmer’. These activities include requirements specification, functional specifica-
tion, logical system design, application system design, physical system design, program
specification and design, program implementation, and system and program main-
tenance. The book is addressed to people, whatever their job titles, who engage in any of
these activities, or want to understand how they may be approached.

There is very little agreement on the definitions of these activities, and even less on
the meanings of the job titles ‘analyst’, ‘designer’ and ‘programmer’. JSD cuts across
even the very small area of agreement that does exist, redrawing the boundaries between
activities and between jobs, so that the existing names and titles become almost entirely
inappropriate. So we shall refer to the activities by the general term ‘development’, and
we shall use the title ‘developer’ to mean whoever is doing the activity currently under
discussion.

Within JSD the primary distinction is between specification and implementation.
The JSD development procedure has six steps, of which the first four are concerned
with creating a specification of the required system, and the last two with implementing
that specification. What is often called ‘design’ has largely been absorbed into the imple-
mentation part of JSD. This division of development into two major parts—specifica-
tion and implementation—seems to be beneficial in many ways. One of the most
important of these is that it encourages recognition of what has arguably always been
the major division between people working in system development: the division between
those whose primary interest lies with the system user and those whose primary interest
lies with the computer.

JSD does not encompass every activity associated with system development. It
excludes activities such as project selection, project planning and management, and
cost/benefit analysis; it excludes procedures for system acceptance, installation and
cutover; it excludes the whole area of human engineering in such matters as dialog

PREFACE

design. JSD also excludes specialized application skills. In a system concerned with con-
trolling inventory, JSD has nothing to say about the question of whether it would be
better to provide an improved service to customers or to reduce the size of the total
inventory. For example, in a system concerned with controlling elevators in a building,
JSD provides no guidance towards a decision whether the pattern of elevator move-
ments should follow one algorithm or another, or whether the system should provide
gentle music to soothe the impatience of waiting customers.

THE SYSTEM AND THE REAL WORLD

The word ‘system’ can be used extensively, to include computer procedures, manual
procedures, all or part of the user organization, everything and everyone that directly
affects or is affected by the result of the development work. So, in an application con-
cerned with control of aircraft engines the system includes the engines themselves and
the devices which increase or reduce flow of air or fuel; in a purchasing application, the
system includes the suppliers, the delivery trucks, the suppliers’ documents, the
receiving bays, the warehouse locations, the clerks in the purchasing department.

In JSD we restrict the use of the word ‘system’, referring essentially to what is
created by the development activity; we distinguish the system from the real world
outside. The real world provides the subject matter for the system: it contains the
engines to be controlled, the employees to be paid, the customers and suppliers whose
transactions are to be accounted for. The system itself consists of computer and manual
procedures and hardware; we think of it as having a definite boundary—the system
boundary—across which inputs and outputs flow between the real world and the
system. This view is pictured in Fig. 1. In an old-fashioned batch data processing
system, the system boundary was almost a physical boundary, enclosing the data pre-
paration and the computer departments, and the mail room, together with some clerical
departments that interfaced with data preparation on one side and the organization’s
customers, employees and suppliers on the other. In on-line and embedded systems, the
boundary is less tangible, but still there.

In JSD the real world is regarded as given, a fixed starting point. This view reflects
the exclusion from JSD of specific application knowledge; it is no part of JSD to choose
the most economic policy for stock replenishment, or to negotiate with labor unions to
determine rules for overtime payments, or to decide the algorithm for computing the
movement of an airplane’s control surfaces to correct a deviation from course. Qur
concern in JSD is to ensure that the system correctly reflects the real world as it is, and
to provide the functions requested by the user, to a specification in which the user has
the determining voice.

Although we regard the real world as given, we do not, of course, exclude the
possibility that some or all of the real world must be invented or changed. For the most
part, the invention or change is not itself an integral part of the JSD development. An
extreme illustration is the general functional requirement: develop a good video game.
The appropriate expert—if one exists—might determine that a certain psychological
pattern would be good, a certain progression of success and reward, expectation and
fulfilment, tension and satisfaction; and that the game should be about an intricate and
difficult search for some treasure. Here, then, is the real world for this system. The JSD
developer helps to specify this real world, working in cooperation with the expert and

PREFACE

xi

The system boundary

The real world

Fig. 1

providing concepts and notations in which the specification can be clearly expressed.
The expert does the invention, and the JSD developer does the description. At a later
stage of development, especially in the implementation stage, some technical invention is
necessary within the system; that is a part of the developer’s task.

APPLICABILITY OF JSD

JSD is used to develop systems whose subject matter has a strong time dimension. For
example, the subject matter of the elevator control system is the real elevators, the real
customers, the buttons they press to summon the elevator, and so on. To describe this
subject matter properly we must place a major emphasis on its time dimension: the
customer presses the call button before the elevator arrives; the doors open after the
elevator arrives; the elevator leaves the floor after the doors close. In a data processing
system for a bank, the subject matter is the real customers, their checks, their bank
loans, their repayments, the interest charges, and so on. Here again, the time dimension
is of central importance. A loan must be granted before repayments begin; repayments
are credited before interest charges are applied; the checking account is opened before
any checks are written.

Because of its emphasis on the time dimension, JSD is very widely applicable.
Certainly it may be used for developing embedded systems, switching systems, control
systems, and all kinds of data processing systems, both on-line and batch. All of these
are concerned with real worlds in which the time dimension is of central importance.

Xii

PREFACE

JSD AND JSP PRINCIPLES

The system development method JSD has grown out of JSP, a program design method
which has been widely taught and used over the past ten years. JSD may be seen as an
enlargement of JSP, applying the same principles to a larger class of problems and to a
larger part of the development task.

The starting point for JSP is a full specification of the program to be designed. A
JSP program is a sequential process, to be eventually implemented in a sequential
programming language such as PL/I, COBOL, Fortran, Pascal, or assembler language.
Its inputs and outputs are viewed as sequential streams of records: a magnetic tape file
or a line printer report is obviously a sequential stream of records; but so also is a set of
segments retrieved from a database, or a set of terminal input messages in a conversa-
tion. A simplified form of the JSP program design procedure is:

(a) describe the structure of each input and output data stream;

(b) combine these structures to form a program structure;

(c) list the operations which the program must execute to produce the outputs from
the inputs, and allocate each operation to its proper place in the program
structure;

(d) write the program text, adding the necessary conditions to control execution of
iteration components (loops or repetitions) and selection components (if—else or
case constructs).

An essential principle of JSP is that the subject matter of the computation is
described first, in steps (a) and (b), while the detailed function of the program is dealt
with later, in step (c). This principle is central also in JSD. The subject matter in JSD is
the real world, strongly ordered in time, outside the system; the detailed function is the
production of system outputs. In JSD the early development steps are concerned with
describing the real world, and explicit consideration of system function is deferred until
later.

A program to satisfy a realistic specification usually needs to be decomposed into
two or more sequential processes: at step (b) of the JSP design procedure, the developer
recognizes that there are structural conflicts, or clashes, among the descriptions of the
data streams. JSP provides a classification of these structure clashes into boundary,
ordering, and interleaving clashes. For each type of clash there is a prescribed
decomposition into a pattern of sequential processes connected by data streams internal
to the program.

JSD does not start from a given specification, nor does it decompose the system
into sequential processes. Instead, JSD development begins by creating a specification
for the system, building it up from parts which are themselves sequential processes: the
activity is therefore one of synthesis rather than decomposition.

Where a program is decomposed into connected sequential processes, JSP
provides an implementation technique for recombining these processes into a single
executable program. This technique, known as program inversion, is a transformation
of a sequential process text into the text of an equivalent subroutine; the processes can
then be combined into a hierarchical structure of subroutines. Combining processes in
this way is regarded as an implementation activity, to be carried out at the end of
program development: the hierarchical structure is devised purely for purposes of
efficient execution, and is not considered in the earlier design steps.

In the same way, JSD provides an implementation technique, based on program
inversion and other transformations, for combining the sequential processes of the
system specification into an efficiently executable system.

PREFACE xiif

5 SYSTEM DEVELOPMENT AND PROGRAM DESIGN

Conventionally, program design and programming are thought of as the final stages in
system development. The earlier activities of system analysis, specification, and design
produce a higher-level structure of the system whose lower levels remain to be com-
pleted by programmers. From this point of view, organizations that have adopted JSP
as their program design method might hope to find that JSD is a ‘front-end’ to JSP: JSD
would create the specifications for programs which would then be designed using JSP.

But it is not so. Aspects of JSP are diffused through the JSD development proce-
dure. The early steps of JSP are concerned with the structure of sequential processes.
They are directly relevant to the development of a JSD specification, which is composed
of sequential processes. The implementation techniques of JSP are embodied in those of
JSD. The JSP identification of structure clashes has a part to play in the JSD descrip-
tion of its real world subject matter. Certainly, there are some parts of a JSD
specification—especially batch reporting programs and batch or on-line treatment of
the system inputs—which can be handed over to a JSP program designer in the
traditional way; and there are tasks in the JSD implementation stage which are very
close to conventional program design tasks. But much of the traditional work of
program design has already been incorporated in the development of a JSD specifica-
tion. This is one example of the way in which JSD redefines the boundaries between
development activities.

It is not necessary to know JSP to read this book. Those parts of JSP which are
incorporated into JSD are explained as they arise, and JSP notations are included, with
JSD notations, in an appendix. A full account of JSP from a program design point of
view is given in M. A. Jackson, Principles of Program Design, Academic Press; another
account is given in Leif Ingevaldsson, JSP: A Practical Method of Program Design,
Studentlitteratur.

6 ARRANGEMENT OF THIS BOOK

The book is arranged in three major parts. In Part I, the JSD development method is
introduced. The underlying principles of JSD are explained and justified by general
arguments in an informal way; the development procedure, divided into six steps, is
described, and is illustrated by a tiny example. Readers who want only a broad
understanding of JSD may find that this part of the book is sufficient for their needs.

Part 11 is a series of chapters following the sequence of the JSD development steps.
Three applications, introduced at the beginning of Part II, are used to provide illustra-
tion of the points arising in each development step. This interleaved treatment of the
three applications allows technical material to be placed where it arises most naturally.
To help the reader to follow the development of each application, the main results for
each are gathered together in appendices and should be referred to as necessary to re-
establish the context of the application as it progresses.

Part 1II contains material on some general aspects of development, such as errors
and system maintenance, and a retrospective view of JSD in the light of the material in
this part and in Part II.

In addition to the appendices, there is a glossary of JSD terms and a summary of
notations used in JSD and in JSP at the end of the book.

It is hoped that the repeated discussion of main points of principle and practice will
help those readers to whom the ideas are unfamiliar and hard to grasp, without irritating
those for whom they are more quickly and easily digestible.

Xiv

PREFACE

EXAMPLES

The examples used are very small; certainly they are smaller than any system that is
likely to be put into productive use. Even in these small examples, some detail, especially
of documentation, has been omitted from the discussion.

Of course, this is inevitable. In a book of this size, there is too little room for even
one complete realistic example. Some authors solve this difficulty by presenting
examples of a realistic size but limiting their discussion to fragments rather than com-
plete examples; this is often done where the method presented is top-down. But JSD is
not a top-down method, and in a section at the end of the book we discuss why we
believe that top-down approaches are essentially inadequate. We prefer instead to limit
ourselves to small examples which can be treated fully, omitting nothing that the reader
might find difficult to supply or that might invalidate the treatment given.

We hope that the reader will not conclude that JSD is a method for developing
very small, toy, systems. E. W. Dijkstra once observed that it is hard to give a talk: if
you use no examples, most of the listeners will fail to understand the subject; if you do
use examples, many of the listeners will conclude that the examples are themselves the
subject. The subject of JSD is the development of a wide class of systems, including
very large systems. The examples given are small, because they are intended to illustrate
the exposition of the method, not to delimit its applicability.

Acknowledgements

The ideas in this book take their form from work done by John Cameron and myself
over the past four years. We have worked together both in developing the ideas and in
presenting them on courses, so in that sense the book is as much his as mine. He has
also commented extensively and carefully on an earlier draft of the book, saving me
from many mistakes: but the words are mine, so any defects of detail and expression are
mine too.

I have never found it easy to recognize, and so to acknowledge, the sources of
ideas I have worked on and promulgated. The influence of Tony Hoare’s work on com-
municating sequential processes will be obvious, and also the influence of Rod Burstall
and John Darlington’s work on program transformation. But I have also been
influenced, without doubt, by many other people. A paper presented at a conference, a
book partly read, an informal discussion at a meeting, can all impart the germ of an
idea without a conscious awareness of the debt. I hope that anyone who recognizes the
influence of his own work in this book will accept these words as an explanation and an
apology.

CIiff Jones and Mike McKeag have given me generous encouragement and valu-
able comments on an earlier draft of the book. So too have Barry Dwyer and Hans
Nigeli. Tony Hoare, the editor of this series, first invited me to write the book, and then
sustained me with encouragement and support when I needed it most. Among the few
people who have made fundamental advances in software engineering, he is dis-
tinguished by his readiness to listen seriously, with care and interest, to ideas that are
s0 much less exact and elegant than his own. Without his help this book would not have
been written.

Contents

Preface ix

Acknowledgements xiv

1.2
1.4
1.6
1.8

Modelling reality 4

Model as the context for function 7
An illustration 9

Model more stable than function 12

1.10 User communication 13
Summary of Chapter 1 15

2.2
24
2.6
2.8

Static and dynamic realities 16
Sequential processes 19

Adding function to a process 21
Entities in JSD 23

Summary of Chapter 2 24

PART | INTRODUCTION TO JSD
1 Modeland Function 3

1.1 Functional specifications 3

1.3 Function based on model 5

1.5 Function implied by model 8

1.7 Maintainability and models 11

1.9 Model and function interdependent 13
1.11 Description before invention 14

2 Process Models 16

2.1 The time dimension 16

2.3 Static and dynamic models 17

2.5 A data processing example 20

2.7 Process connections 22

3 Implementing the Specification 25
3.1 The ‘what’ and the ‘how’ 25

3.3 Abolishing implementation 28

3.5 Process scheduling 30

3.7 Process scheduling at build time 32
3.9 A basic transformation 34

32
34
3.6
38

The hidden path and program proving 26
Direct execution of a specification 28
Machines not matched to specifications 31
Implementing by transforming 33

3.10 The significance of implementation

technique 35

Summary of Chapter 3 36

vi

4 JSD Development Procedure 38

4.1 Development steps 38

4.3 The entity structure step 41

4.5 The function step 46

4.7 The implementation step 50

4.9 One implementation steponly 55

CONTENTS

4.2 The entity action step 39

4.4 The initial mode] step 44

4.6 The system timing step 49

4.8 Iterative development 54

4.10 Where programming fitsin 56

Summary of Chapter 4 57

PART I} JSD DEVELOPMENT STEPS

5 Three Applications 61

5.1 Application outlines not specifications 61
5.3 The Hi-Ride Elevator Company 62

6 The Entity Action Step 64

6.1 The model boundary 64

6.3 Making the lists 66

6.5 Generalizing and classifying entities 70

6.7 Generic entities 72

6.9 Daily Racket: action list 74

6.11 Widget Warchouse: entities and actions
76

6.13 Hi-Ride Elevator: entities and
actions—1 79

6.15 Hi-Ride Elevator: entities and
actions—2 81

7 The Entity Structure Step 84

7.1 Action ordering in time 84

7.3 Sequence 87

7.5 Selection 90

7.7 Errors and falsehoods 94

7.9 Minimal structures 98

7.11 Entities, structures and roles 104

7.13 Widget Warehouse: entity
structures—1 110

7.15 Widget Warehouse: entity
structures—2 117

8 Initial Model Step 121

8.1 Level-0andlevel-1 121
8.3 Process connection 127
8.5 Daily Racket: initial model—1 134

59

5.2 The Widget Warehouse Company 61
5.4 The Daily Racket Competition 62

6.2 Entities and actions 65

6.4 Daily Racket: entities list 68

6.6 Collective entities 72

6.8 Entities, functions and costs 73

6.10 Daily Racket: action descriptions 76
6.12 Common actions 77

6.14 Undetectable entities and events 80

Summary of Chapter 6 83

7.2 Structure diagrams 86

7.4 [Iteration 89

7.6 Hi-Ride Elevator: entity structures 91
1.8 Daily Racket: entity structures 97
7.10 Marsupial entities 100

7.12 Premature termination 107

7.14 Checking a composite structure 114

Summary of Chapter 7 119

8.2 Structure text 122
8.4 Data stream connection 129
8.6 State-vector connection 137

CONTENTS vil

8.7 State-vector values 138 8.8 Hi-Ride Elevator: initial model 139
8.9 Data structures 144 8.10 Daily Racket: initial model—2 145
8.11 Widget Warehouse: initial model—1 146 8.12 A restatement in manualterms 151
8.13 Multiple inputs to one process 155 8.14 Rough merge 159

8.15 Widget Warehouse: initial model——2 161 8.16 Time grain markers 165

8.17 Process creation and deletion 167 Summary of Chapter 8 168

9 The Function Step 17%

9.1 Adding function to the model 171 9.2 Some general considerations 175
9.3 Hi-Ride Elevator: function 1 9.4 Daily Racket: function 1 (embedded) 180
(embedded) 178
9.5 Daily Racket: function 2 181 9.6 Widget Warehouse: functions 1 and
2 (level-2) 185
9.7 Daily Racket: function 3 (imposed) 187 9.8 Access paths in imposed functions 189
9.9 Widget Warehouse: function 3 (imposed) 190 9.10 Restructuring for output 193
9.11 Hi-Ride Elevator: major 9.12 A little light backtracking 203

functions—1 194
9.13 Hi-Ride Elevator: major functions—2 209 9.14 Hi-Ride Elevator: major functions—3 212

9.15 Some indeterminacy in function 218 9.16 State-vectors and mutual exclusion 219
9.17 Delay timing 222 9.18 Widget Warehouse: major
functions—1 224
9.19 Widget Warehouse: major 9.20 Daily Racket: major functions—1 233
functions—2 231
9.21 Daily Racket: major functions—2 238 9.22 Attributes 241

Summary of Chapter 9 244

10 The System Timing Step 246

10.1 Timing and the specification 246 10.2 Implementation freedom 247
10.3 State-vector connection to level-0 248 10.4 A more demanding example 249
10.5 How up to date is the model? 249 10.6 Timing and rough merges 250

10.7 Timing and gathered outputs 253

11 The Implementation Step 256

11.1 The implementation task 256 11.2 Hi-Ride Elevator: implementa-
tion—1 257
11.3 Hi-Ride Elevator: implementa- 11.4 Scheduling without a scheduler 268
tion—2 263
11.5 Scheduling characteristics of inversion 272 11.6 Implementing rough merge with inversion 274
11.7 Channels 276 11.8 Scheduling with buffers 280
11.9 State-vector separation 284 11.10 Widget Warehouse: implementa-
tion—1 288
11.11 Widget Warehouse: implementa- 11.12 Process dismembering—1 299
tion—2 296

11.13 Process dismembering—2 301 11.14 SID notations for dismembering 305

viil CONTENTS

11.15 Widget Warehouse: implementa- 11.16 Widget Warehouse: implementa-
tion—3 307 tion—4 310
11.17 Daily Racket: implementation 320 11.18 Hi-Ride Elevator: implementation—3 324

11.19 Hi-Ride Elevator: implementation—4 325 11.20 Database design and implementation 329
Summary of Chapter 11 331

PART Ill VARIOUS TOPICS 333

12 The Input Subsystem and Errors 334

12.1 Role of the input subsystem 334 12.2 Some distinctions 335

12.3 Eliminating invalid inputs—1 338 12.4 Eliminating invalid inputs—2 340
12.5 Eliminating invalid inputs—3 341 12,6 Eliminating invalid inputs—4 343
12.7 Error detection and scheduling 348 12.8 False inputs 350

13 System Maintenance 352

13.1 The maintenance problem 352 13.2 One process instance 353
13.3 Multiple process instances 356 13.4 Extending existing systems 359

14 Retrospect 361

14.1 Managing a JSD project 361 14.2 Documentation 363
14.3 Data structures in JSD 365 14.4 Some methodology 368
14.5 Not top-down 370

Appendix A JSD Glossary 374

Appendix B JSD Notations 378

AppendixC The Daily Racket Competition 382
Appendix D The Widget Warehouse Company 389
Appendix E The Hi-Ride Elevator Company 405

Index 415

PART |

INTRODUCTION TO JSD

This part of the book is arranged in four chapters. The first three chapters explain
and discuss the fundamental principles of JSD, and the fourth chapter describes
the JSD development procedure.

Chapter 1 is about the distinction between model and function and the
priority given to modelling over functional considerations in JSD. In JSD, develop-
ment does not begin by specifying the function of the system to be developed:
instead, it begins by describing and modelling the real world which provides the
subject matter of the system. The functions of the system are specified on the
basis of this model. A JSD system may be regarded as a simulation of the relevant
parts of the real world outside the system; system functions are regarded as
providing outputs derived from the behavior of this simulation.

Chapter 2 is about process models. The JSD method is concerned with
applications in which the real world is dynamic, with events occurring in time-
ordered sequence. Most data processing applications are of this kind, as also are
applications in process control, embedded systems, and switching systems. To
model such a dynamic reality adequately, it is necessary to use a modelling
medium which is itself dynamic. JSD models are therefore built from sequential
processes, rather than from the components of a database. The term ‘sequential
process’ has a strong flavor of programming and technology: but in essence a
sequential process is no more than a statement of the time-ordering of events,

Chapter 3 is about implementation. Because a JSD specification, both of
model and of function, is expressed in terms of sequential processes, it is in
principle capable of direct execution on the computer {or computers) on which the
system is to run. But there is often—in typical data processing systems, always—a
mismatch between the number and characteristics of the processes in the JSD
specification and the number and characteristics of those which can be con-
veniently executed on readily available computers and operating systems. The
implementation step in JSD is therefore centrally concerned with transforming the
specification to make it convenient to execute. By regarding the implementation
task as one of transformation, we narrow the gap between the specification and
the executable system which implements it.

INTRODUCTION TO JSD 2

Chapter 4 describes the JSD development procedure, step by step. A brief
example is used to illustrate the content and method of each step. The purpose of
this chapter is to give a framework of the development procedure rather than to
explore detailed considerations and questions arising at each step: that is the
purpose of the second part of the book.

Model and function

1.1

FUNCTIONAL SPECIFICATIONS

Traditionally, the starting point in system development is the functional requirement.
The developer begins by establishing the system’s function, determining what the system
is to do and what outputs it is to produce. The essential content of the system specifica-
tion is the statement of system function.

This tradition has deep roots. In the earliest days of electronic computing, the com-
puter was regarded as a machine which could be commanded, instructed, or ordered, to
perform certain elementary functions. Thus we spoke of an ‘add command’, or a ‘move
instruction’, or a ‘multiply order’. A program or a system consisted of a set of these
commands, commanding the computer to perform elementary functions in a pattern
which amounted to the performance of larger, composite, functions. A suitable pattern
of add, subtract, multiply, divide and move commands amounted to the calculation of
gross pay for an employee in a payroll system. The invention of the subroutine in 1949
allowed larger functions to be conveniently specified in terms of smaller functions. It
was then a relatively short step to view a program or system as having a single function
which could be successively decomposed into smaller functions until the level of the
already available machine functions was reached.

There is an obvious and attractive common sense about this. The purpose of the
system is to do something, to perform some function, and that provides an apparently
natural starting point for development; not merely natural, but convenient too, since the
activity of decomposition, detailing, or refinement, can then lead to the final product of
development, the finished system.

1.2

CHAP. | - MODEL AND FUNCTION

This is essentially the view on which ‘functional decomposition’ is founded. The
system function is organized as a hierarchy of functional procedures, and development
consists of elaborating this hierarchy from the top downwards. It is also the view
underlying ‘structured systems analysis and specification’ (see, for example, Tom de
Marco, Structured Analysis and System Specification, Yourdon, and Chris Gane and
Trish Sarson, Structured Systems Analysis: Tools and Techniques, Prentice-Hall). In
that approach, the system function is organized as a hierarchy of processes connected
by data flows: each process performs a part of the system function, and is itself
decomposed into a set of processes connected by data flows, each one performing a
sub-part of the function. But whether the medium is procedures or processes, subroutine
calls or data flows, the message is function.

MODELLING REALITY

JSD relegates consideration of system function to a later step in development, and
promotes in its place the activity of modelling the real world. The developer begins by
creating a model of the reality with which the system is concerned, the reality which fur-
nishes its subject matter, about which it computes.

Every computer system is concerned with a real world, a reality, outside itself. A
telephone switching system is concerned with telephone subscribers, telephone handsets,
dialling, conversations, conference calls. A payroll system is concerned with employees,
the work they do, the pay they earn, the tax they must pay, the holidays they are
entitled to. A process control system for a chemical plant is concerned with the vessels,
pipes and valves of the plant, the flow of liquids and gases, the temperatures and pres-
sures at the various points in the plant. A sales order processing system is concerned
with customers, the orders they place, the products they order, the deliveries they
receive, the payments they make.

It is a fundamental principle of JSD that the developer must begin by modelling
this reality, and only then go on to consider in full detail the functions which the system
is to perform. The system itself is regarded as a kind of simulation of the real world; as
the real world goes about its business, the system goes about simulating that business,
replicating within itself what is happening in the real world outside. The functions of the
system are built upon this simulation; in JSD they are explicitly added in a later
development step.

In JSD, we use the word ‘model’ to mean a model of a reality outside the computer
system which is being developed. There is some scope for confusion here, because the
same word is used by other writers with other meanings. Some writers use the word
‘model’ to denote a somewhat abstract description of the system itself or of its function.
When they speak of ‘modelling’ they mean describing the system function in ‘logical’
rather than ‘physical’ terms, describing what the system does without giving detail of
how it does it. Other writers speak of ‘modelling the system’ in terms of its performance

