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Introduction

Mathematical programming (i.e. planning) is an application of
techniques to the planning of industrial, administrative, or economic
activities. Analytically, it consists of the optimization (maximization or
minimization) of a function of variables (the “objective function™)
which describe the levels of activities (production of a commodity,
distribution of facilities, etc.) and which are subject to constraints
(e.g. restrictions in the availability of raw material, or on the capacities
of communication channels). As a rule; the vanables are also resmcted
to taking only nonnegative values.

The formulation of applied problems will incorporate “téchnological”
coeflicients (prices of goods, cost and capacity of production, etc.) on
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viii Introduction

which a model of the situation to be analyzed can be based. In the
classical situation these coefficients are assumed to be completely known.
But if one wants to be more realistic, then this assumption must be
relaxed. Tintner (1941) distinguishes between subjective risk, when
“there exists a probability distribution of anticipation which is itself
known with certainty,” and subjective uncertainty, when “there is an
a priori probability of the probability distributions themselves.”

The former field leads to stochastic, or probabilistic, programming,.

We assume, then, that the (joint) distribution of the technological
coefficients is given. This includes the case when they are independently
distributed, and cases when some of them have given values, without
stochastic deviations. ;

A number of possible attitudes to deal with such a situation have been
proposed. For instance, we might be ready to wait until the actual values
of the coefficients and constants become known—for instance the
requirement for some commodities during the next selling period—but

we find that we must choose now in which type of activity we shall invest

funds which we have available.

Under these circumstances we shall remind ourselves that if the :
coefficients are random variables, then the best result which we can -

obtain, after their values have become known and are taken into account
to find the most favorable activities, is also a random variable.
Assume, then, that various investment possibilities have been offered

. to us, all of them incurring some risk, but that we are confident that we _

shall be able to find the best procedure in all possible emerging situations.
Which criteria shall we then apply in choosing among the offers?

This is a problem for economists not for mathematicians. Economists
tell us that we might choose, perhaps, the investment which offers the
largest expected value of the objective function, or the largest probability
that the objective function will reach, at least, some critical value, or
indeed some other criterion.

It is then the job of the mathematician to compute the relevant
“preference functional,”” in most cases by first computing the distribution
function of the optimum of the objective function.

This attitude, called the *“wait-and-see” approach by Madansky
(1960), is that which was originally called ‘“‘stochastic programming” by
Tintner (1955). These are not decision problems in the sense that a

decision has to be made “here-and-now” about the activity levels. We -
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Introduction ix

wait until an observation is made on the random elements, and then
solve the (deterministic) problem. Chapter I deals with such wait-and-see
problems.

Chapter II contains the analysis of decision problems, in particular
of so-called two-stage problems, which have been extensively studied.
In these problems a decision concerning activity levels is made at once,
in such a way that any emerging deviations from what would have been
best, had one only known what values the stochastic elements were
going to have, are in some way evaluated and affect the objective
function.

In Chapter III we turn to “chance constraints,” i.e. constraints which
are not expected to be always satisfied, but only in a proportion of cases,
or “with given probabilities.”” These are decision problems which reduce
to problems treated in Chapter II, if the probabilities are equal to unity.

The reader should be familiar with the concepts and procedures of
linear programming, and in particular with the simplex method of
solving linear programs, a brief survey of which is given in Appendix L
Some concepts of nonlinear programming are also used sporadically,
and for these the reader is referred to standard textbooks. All those
concepts for which no special reference is given can be found, for
instance, in Vajda (1961) and, more specifically, in Vajda (1967).

Features of importance for computation are mentioned, though
alogorithms are not discussed in detail.

An extensive reference list is included, and in Appendix II a list is
given of applications described in the literature. However, no complete-
ness is claimed in this respect, or indeed in any other, since the subject
is still being vigorously pursued by many workers.

The preparatory work, including a first draft, was carried out while the
author held a Senior Research Fellowship, awarded by the Science
Research Council (of Great Britain),in the Department of Mathematical
Statistics of the University of Birmingham. The manuscript was com-
pleted ‘while he was a David Brewster Cobb Senior Fellow in the
Department of Transportation and Environmental Planning, in the
same University.
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Stochastic Programming

Parameters

Consider the problem of minimizing ¢’ x, subject to Ax>b, x=0,
where ¢is a n-vector, b is a m-vector, and A4 is an m by n matrix, while
x is the unknown n-vector to be determined. Let mn+m-+n= M.

(If not mentioned otherwise, vectors are column vectors. The transpose
of vectors and matrices will be indicated by a prime.) ’

1
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2 I Stochastic Programming
The components can be written, parametrically, as
C; = Cjo+Cptay+ i+ Cptyy G=1..,n
by=bio+bytyy+ - +bt, - ((=1,..,m
a4 = Qo + Gy by + - + Gty (6,j asabove)

where r < M, and the parameters #, (k =1, ...,7) have a joint proba-
bility distribution. Hence results of the theory of parametric program-
ming can be adapted to purposes of the study of the stochastic case.

We shall assume that the support 7, say, of the parameters, i.e. the
smallest closed set of values f,.with probability measure unity, is convex
and bounded in t = (), ..., {))-

Feasibility and Convexity

We shall be interested in the relationship between the feasibility of
vectors x and the parameters. It will then be possible to obtain some
insight into the distribution of the minimum of the objective function
¢’ x. Such knowledge will also be‘relevant to decision problems, since we
would not, for instance, choose a value x which has no or merely a $mall
chance of being feasible when the actual value of ¢ emerges.

When we express all constants as linear functions of the parameters,
then a linear objective function, and linear constraints, will be linear in
the #,), and also in the components x; of x, sepé.rately. It follows that
T(x), the set of all those ¢ for which a given x > 0 is feasible, is convex,
and it will be polyhedral;t if T'is polyhedral. The set of those ¢ for which
every x > 0 is feasible is the intersection of an infinity of sets T'(x), and
hence also convex, though possibly empty.

As a simple illustration (cf. Vajda, 1970), take the case when the

+ Or polytopic, but we shall continue to use the more usual term.




Feasibility and Convexity 3

constraints are
ax = b, x>0

° (a case where m =n = 1), and a as well as b take, independently, values
in the closed interval (—1,1). The (convex) sets of -(a,b) for which
certain chosen values of x are feasible, are shown in Figure 1.

(R))

(i) b+ (i) b (iii) b
! ? (4, 172)
- |
(-1,0) J‘ wol _, ' - ] ——
| (~4,4/:
i
1
-l ’
{=4,~4) -0 (-1,~8 4,0 =1,-0 ()]
x=0 x=1{/2 x=4 .
(72,) 1) (175,4) (4,4
(iv) b} v) b}
-a -0
12 1) (-1 U511 (4-1)
x=2 x=3
Figure 1

From the linear relationship between 7 and x it follows, also, that X(?),
the set of those x > 0 which are feasible for a given ¢ is convex and poly-
hedral. The set of those x = 0 which are feasible for any ¢ (permanently
Sfeasible) is the intersection of such sets and hence also convex (and
possibly empty).

To take again the example above, fora= —0.1,b = —14, all x in [0,5]
are feasible. In this example no permanently feasible x exists. f 0 < b < 1
and —1 € a <0, then X (1) = X(aq, b) is empty.

As far as feasibility is concerned, the objective function, and its
possibly stochastic character, are irrelevant. But we must distinguish
between the case when only b’ = (b, ..., b,) is stochastic, and that when
the elements of 4 (and perhaps those of b as well) are stochastic.



4 1 Stochastic Programming

First, we deal with the case when only 4 is stochastic. Then the set of
those ¢ for which X(¢) is not empty is convex.

Proor: If .
Ax = b(1y)
has a solution x,, and
Ax = b(1,)
has a solution x,, then
| Ax = b(Aty + uty), with A,u =0, Atpu=1

has also a solution, e.g. Ax; + pux,. [}

The set of those x >0 for which T(x) is not empty is also convex.
Proor: If
Ax, 2 b()
has a solution ¢,, and
Ax, 2 b(D)
has a solution #,, then
AQx +px;) 2 b(1) -
has also a solution, e.g. b(4t, + ut,), since T'is conve*. |

A theorem of Kall (1966) gives conditions for 4 to be such that some
x = Oexists whatever the values of the coefficients b, when the constraints
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Kall’s Theorem 5

are equations, Ax = b. Clearly the matrix 4 must then have rank m, and
we assume that the first m columns, written 4, ..., 4,,, are independent,.
In fact, A must have more than m columns, because it is impossible that
some b,, and also — b, be represented as nonnegative linear combinations
of the same m independent columns. Hence k =n—m 2 1.

Kall’s Theorem

For Ax = b to have a nonnegative solution x for all b it is necessary
and sufficient that there exist

w=20 and 4,<0

such that
m+k m
> o 4;= Y A4 A
j=m+1 Jj=1

where 4; is the jth column of the matrix 4.

This condition is necessary: Let b= 2‘, ﬂ,A} Such B, exist, and for

m+k

some b they will all be negative. Then, 4Ax = 2 x;4; equals Z BiA;= b

we have
m+k

. v
Y Bi-x)4;= Y x4,
i=1 J=m+1

and since x; >0 and f; <0, we can identify u; with x;, and 4; with
ﬁj—x_i.
The condition is also sufficient: Let again

b=3 B4,
Jj=1



6 I Stochastic Programming

The set of ; is unique for a given b. If they are all nonnegative, then
Ax =bhasasolutionx; = ;> 0forj=1,...,mand x; =0forj=m+1,
., m+k.
On the other hand, if one at least of the B; is negative, then we must

find another representation of b in terms of 4;, with only nonnegative *
coefficients. Let, then, (A) hold. The largest of the ratios 8,/4; (j < m) is
positive, if at least one of the f; found above is negative. We may assume, J

without loss of generality, that the largest of these ratios is reached at
Jj=m. Because 4,, ..., 4, are independent, this is also true of 4,, ...,

A,.,and f: A;4; = Ay, say. Thus the representation
J=1

m—1

b= Y 14
j=0

is also unique. We show, next, that all y; are nonnegatlve
We have

m m-1
b=y Y L4A4;+ Y 14,
j=t i=
. .
while we have, also b= ) B;4,. Because both representations of b
j=1 , .
are unique, we must have '
By=vi+v4 for j=1,.,m-1 »

and

| ﬂm = yOA‘ll'

Hence



Kall’s Theorem 7 o

and
B Bm .
y’=ﬂ1_ljy°=l’|:f_}._ =0 for j=1,....m—1
j m
m+k
To complete the argument, we remember that also 4o = 3 u;4;
j=m+1

and that the y; are > 0. Thus

m~1 m+k
b= Y n4;+ Y vom4,
J=1 . J=m+1

and in this representation all coefficients are nonnegative.

For instance, if A.= [, —I], where I is the identity matrix of order m,
then y; =1, A;= —1 for all j for such a set of coefficients, and indeed
the set

Xy—X2=b - (=1,..,m)

has a nonnegative solution for any value of b;.

We turn now to the case where A is stochastic. Simple examples show
that then the sets of ¢, and x, respectively, for which X (¢) and T(x) are not
empty, are not always convex. For instance,

t-3)x;+(1-0x, 2 1

cannot be satisfied, with nonnegative x, and x,, if 1 << 3. The set of
those values, for which X (¢) is not empty, i.e. the set of values of 7 outside
this interval, is not convex.

The set of those x >0 for which T'(x) is not empty is not convex when
the constraint is

(—142)x, + (2-40)x, > 1, 0<t<l.
The constraint can be written

(=1+20(x;—2x;) > 1




8 1 Stochestic Programming
and because the first factor is in the interval [ — [, 1], the second must be

2 1, or € —1. The set of such x, and x, is not convex.

Optimality and Convexity

We shall now consider optimality rather than feasibility. In this case
we must also take into account whether or not ¢ is stochastic. We assume
again that ¢’ x is to be minimized.

The set X°(f) of those x > 0 which are optimal for a given ¢ is known to
be convex and polyhedral from elementary linear programming theory.
Of course, it could be empty, and we start by studying the set of those ¢
for which it is not empty. '

If only c is stochastic, then this set is convex.

Proor: If
c(t)xy < e(ty))x
for all feasible x, ;md also |
c(t)x; < c(t2)'x
for all feasible x, then when |
Auz=0 and A+y'=1-
cQUty+pt)' x = Ac(t)'x + pe(t)'x
is bounded from below, for all feasible x, by
| Ac(t) xy + pe(t) x,.

Therefore a finite minimum exists for # = Ary + ut, as well. |
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The convexity of the set of those ¢ for which an optimum exists, when
only c is stochastic, was also proved by Simons (1962), who called this
set admissible.

If only b is stochastic, then the set.of those ¢ which admit a finite mini-
mum is the same as the set of those 7 which admit a finite maximum for

_the dual program, and is therefore also convex, by the above argument.

Now let ¢ as well as b be stochastic. Then the following argumentt
can be used to show that the set of those 7 for which an optimal x exists
is still convex.

Let ¢, lead to a finite minimum of ¢(#,) x, subject to Ax > b(¢,), x > 0.
Then there is also a finite maximum to the objective function b(¢,)'y,
subject to 4’y < c(t,), y=0.

Let O bethe set of those ¢ for which b(7)'y, subject to A’y < ¢(t,),y 2 0,
has a finite maximum. It is also the set of those # which make Ax > b(¢)
consistent, and is thus independent of ¢,.

Let P be the set of those ¢ which make the minimum of ¢(¢)'x, subject
to Ax > d, finite. It is independent of d, because it is the set of those # for
which A’y < ¢(f) is consistent. In particular, c¢(f)’x has a finite minimum
ifd=b(t,) with ¢, in Q. ,

The set we are looking for is the intersection of P and Q, which is
convex. .

If A is stochastic, then the set of those  for which X°(#) is not empty is
not necessarily convex.

For instance, if we have

- x; +(1-Ox,21; x,,x,20

then the set X (¢) is not empty only when ¢ < 1, or ¢ > 3, as we have seen.
Inthese regions X°(¢) is not empty either when, forinstance, the objective
function to be minimized is x, +x,. Its minimum is obtained for x, =0,
x;=1/(1-1) when t < 1, and for x, = 1/(t—3), x, =0 when 7> 3.

We call 7°(x) the set of those ¢ for which a given x >0 is optimal.
Simons (1962) calls this the region of validity. He deals with the case
when only c is stochastic. In this case T°(x) is convex for any x.

t From the Ph.D. Thesis in the University of Birmingham of A.S. Gongalves (1969).



