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Preface

All measurements, however careful and scientific, are subject to some
uncertainties. Error analysis is the study and evaluation of these un-
certainties, its two main functions being to allow the scientist to estimate
how large his uncertainties are, and to help him to reduce them when
necessary. The analysis of uncertainties, or “errors,” is a vital part of any
scientific experiment, and error analysis is therefore an important part of
any college course in experimental science. It can also be one of the most
interesting parts of the course. The challenges of estimating uncertainties
and of reducing them to a level that allows a proper conclusion to be
drawn can turn a dull and routine set of measurements into a truly
interesting exercise.

This book is an introduction to error analysis for use with an intro-
ductory college course in experimental physics of the sort usually taken
by freshmen or sophomores in the sciences or engineering. 1 certainly do
not claim that error analysis is the most (let alone the only) important part
of such a course, but I have found that it is often the most abused and
neglected part. In many such courses, error analysis is “taught” by handing
out a couple of pages of notes containing a few formulas, and the student
is then expected to get on with the job solo. The result is that error analysis
becomes a meaningless ritual, in which the student adds a few lines of
calculation to the end of each laboratory report, not because he or she
understands why, but simply because the instructor has said to do so.

I wrote this book with the conviction that any student, even one who
has never heard of the subject, should be able to learn what error analysis
is, why it is interesting and important, and how to use the basic tools of
the subject in laboratory reports. Part I of the book (Chapters 1 to 5) tries
to do all this, with many examples of the kind of experiment encountered
in teaching laboratories. The student who masters this material should
then know and understand almost all the error analysis he or she would
be expected to learn in a freshman laboratory course: error propagation,
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the use of elementary statistics, and their justification in terms of the
normal distribution.

Part IT contains a sclection of more advanced topics: least-squares
fitting, the correlation coefficient, the > test, and others. These would
almost certainly not be included officially in a freshman laboratory course,
although a few students might become interested in some of them. How-
ever, several of these topics would be needed in a second laboratory
course, and it is primarily for that reason that [ have included them.

I am well aware that there is all too little time to devote to a subject like
error analysis in most laboratory courses. At the University of Colorado
we give a one-hour lecture in each of the first six weeks of our freshman
laboratory course. These lectures, together with a few homework assign-
ments using the problems at the ends of the chapters, have let us cover
Chapters 1 through 4 in detail and Chapter 5 briefly. This gives the students
a working knowledge of error propagation and the elements of statistics,
plus a nodding acquaintance with the underlying theory of the normal
distribution.

From several students’ comments at Colorado, it was evident that the
lectures were an unnecessary luxury for at least some of the students, who
could probably have learned the necessary material from assigned reading
and problem sets. I certainly believe the book could be studied without
any help from lectures.

Part H could be taught in a few lectures at the start of a second-year
laboratory course (again supplemented with some assigned problems).
But, even more than Part 1, it was intended to be read by the student at
any time that his or her own needs and interests might dictate. Its seven
chapters are almost completely independent of one another, in order to
encourage this kind of use.

I have included a selection of problems at the end of each chapter; the
reader does need to work several of these to master the techniques. Most
calculations of errors are quite straightforward. A student who finds
himself or herself doing many complicated calculations (either in the
problems of this book or in laboratory reports) is almost certainly doing
something in an unnecessarily difficult way. In order to give teachers and
readers a good choice, 1 have included many more problems than the
average reader need try. A reader who did one-third of the problems would
be doing well.

Inside the front and back covers are summaries of all the principal
formulas. I hope the reader will find these a useful reference, both while
studying the book and afterward. The summaries are organized by
chapters, and will also, I hope, serve as brief reviews to which the reader
can turn after studying each chapter.
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Within the text, a few statements—equations and rules of procedure—
have been highlighted by a shaded background. This highlighting is
reserved for statements that are important and are in their final form (that
is, will not be modified by later work). You will definitely need to remember
these statements: so they have been highlighted to bring them to your
attention.

The level of mathematics expected of the reader rises slowly through
the book. The first two chapters require only algebra; Chapter 3 requires
differentiation (and partial differentiation in Section 3.9, which is optional);
Chapter 5 needs a knowledge of integration and the exponential function.
In Part 1L, 1 assume that the reader is entirely comfortable with all these
ideas.

The book contains numerous examples of physics experiments, but an
understanding of the underlying theory is not essential. Furthermore. the
examples are mostly taken from elementary mechanics and optics, to make
it more likely that the student will already have studied the theory. The
reader who needs it can find an account of the theory by looking at the
index of any introductory physics text.

Error analysis is a subject about which people feel passionately, and no
single treatment can hope to please everyone. My own prejudice is that,
when a choice has to be made between ease of understanding and strict
rigor, a physics text should choose the former. For example, on the con-
troversial question of combining errors in quadrature versus direct
addition, I have chosen to treat direct addition first, since the student can
easily understand the arguments that lead to it.

In the last few years, a dramatic change has occurred in student lab-
oratories with the advent of the pocket calculator. This has a few unfor-
tunate consequences—most notably, the atrocious habit of quoting
ridiculously insignificant figures just because the calculator produced
them—but it is from almost every point of view a tremendous advantage,
especially in error analysis. The pocket calculator allows one to compute,
in a few seconds, means and standard deviations that previously would
have taken hours. It renders unnecessary many tables, since one can now
compute functions like the Gauss function more quickly than one could
find them in a book of tables. I have tried to exploit this wonderful tool
wherever possible.

It is my pleasure to thank several people for their helpful comments and
suggestions. A preliminary edition of the book was used at several
colleges, and I am grateful to many students and colleagues for their
criticisms. Especially helpful were the comments of John Morrison
and David Nesbitt at the University of Colorado, Professors Pratt and
Schroeder at Michigan State, Professor Shugart at U. C. Berkeley, and
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Professor Semon at Bates College. Diane Casparian, Linda Frueh, and
Connie Gurule typed successive drafts beautifully and at great speed.
Without my mother-in-law, Frances Kretschmann, the proofreading
would never have been done in time. 1 am grateful to all of these people
for their help; but above all I thank my wife, whose painstaking and
ruthless editing improved the whole book beyond measure.

J. R. Taylor
November 1, 1981
Boulder, Colorado
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Preliminary Description of Error Analysis
How to Report and Use Uncertainties
Propagation of Uncertainties

Statistical Analysis of Random Uncertainties
The Normal Distribution

PN

Part [ introduces the basic ideas of error analysis as they are needed in a
typical first-year, college physics laboratory. The first two chapters de-
scribe what error analysis is, why it is important, and how it can be used
in a typical laboratory report. Chapter 3 describes error propagation,
whereby uncertainties in one’s original measurements “propagate”
through calculations to cause uncertainties in one’s calculated final
answers. Chapters 4 and 5 introduce the statistical methods with which
the so-called random uncertainties can be evaluated.






CHAPTER 1

Preliminary Description of Error Analysis

Error analysis is the study and evaluation of uncertainty in measurement.
Experience has shown that no measurement, however carefully made, can
be completely free of uncertainties. Since the whole structure and applica-
tion of science depends on measurements, it is therefore crucially impor-
tant to be able to evaluate these uncertainties and to keep them to a
minimum.

In this first chapter we describe some simple measurements that illus-
trate the inevitable occurrence of experimental uncertainties and show
the great importance of knowing how large these uncertainties are. We
shall then describe how (in some simple cases, at least) the magnitude of
the experimental uncertainties can be realistically estimated, often by
means of little more than ordinary common sense.

1.1. Errors as Uncertainties

In science the word “error” does not carry the usual connotations of
“mistake” or “blunder.” “Error” in a scientific measurement means the
inevitable uncertainty that attends all measurements. As such, errors are
not mistakes; you cannot avoid them by being very careful. The best you
can hope to do is to ensure that errors are as small as reasonably possible,
and to have some reliable estimate of how large they are. Most textbooks
introduce additional definitions of “error,” and we shall discuss some of
these later. For the moment, however, we shall use “error” exclusively in
the sense of “uncertainty,” and treat the two words as being interchange-
able.

1.2, Inevitability of Uncertainty

To illustrate the inevitable occurrence of uncertainties, we have only to
examine carefully any everyday measurement. Consider, for example, a

3



4 Chapter 1 PRELIMINARY DESCRIPTION OF ERROR ANALYSIS

carpenter who must measure the height of a doorway in order to install
a door. As a first rough measurement, he might simply look at the door-
way and estimate that it is 210 cm high. This crude “measurement” is
certainly subject to uncertainty. If pressed, the carpenter might express
this uncertainty by admitting that the height could be as little as 205 or
as much as 215 cm.

If he wanted a more accurate measurement, he would use a tape mea-
sure, and he might find that the height is 211.3 ¢cm. This measurement is
certainly more precise than his original estimate, but it is obviously still
subject to some uncertainty, since it is inconceivable that he could know
the height to be exactly 211.3000 rather than 211.3001 cm, for example.

There are many reasons for this remaining uncertainty, several of which
we will be discussing in this book. Some of these causes of uncertainty
could be removed if he took enough trouble. For example, one source of
uncertainty might be that poor lighting is making it difficult to read the
tape; this could be corrected by improving the lighting.

On the other hand, some sources of uncertainty are intrinsic to the
process of measurement and can never be entirely removed. For example,
let us suppose the carpenter’s tape is graduated in half-centimeters. The
top of the door will probably not coincide precisely with one of the half-
centimeter marks, and if it does not, then the carpenter must estimate just
where the top lies between two marks. Even if the top happens to coincide
with one of the marks, the mark itself is perhaps a millimeter wide: so he
must estimate just where the top lies within the mark. In either case, the
carpenter ultimately must estimate where the top of the door lies relative
to the markings on his tape, and this necessity causes some uncertainty
in his answer.

By buying a better tape with closer and finer markings, the carpenter
can reduce his uncertainty, but he cannot eliminate it entirely. If he be-
comes obsessively determined to find the height of the door with the
greatest precision that is technically possible, he could buy an expensive
laser interferometer. But even the precision of an interferometer is limited
to distances of the order of the wavelength of light (about 0.5 x 10~°
meters). Although he would now be-able to measure the height with fan-
tastic precision, he still would not know the height of the doorway exactly.

Furthermore, as our carpenter strives for greater precision, he will
encounter an important problem of principle. He will certainly find that
the height is different in different places. Even in one place, he will find
that the height varies if the temperature and humidity vary, or even if he
accidentally rubs off a thin layer of dirt. In other words, he will find that
there is no such thing as the height of the doorway. This kind of problem
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is cailed a problem of definition (the height of the door is not a well-defined
quantity) and plays an important role in many scientific measurements.

Our carpenter’s experiences illustrate what is found to be generally true.
No physical quantity (a length, a time, a temperature, etc.) can be measured
with complete certainty. With care we may be able to reduce the uncer-
tainties until they are extremely small, but to eliminate them entirely is
impossible.

In everyday measurements we do not usually bother to discuss uncer-
tainties. Sometimes the uncertainties simply are not interesting. If we say
that the distance between home and school is 3 miles, it does not matter
(for most purposes) whether this means “somewhere between 2.5 and 3.5
miles” or “somewhere between 2.99 and 3.01 miles.” Often the uncertain-
ties are important, but can be allowed for instinctively and without
explicit consideration. When our carpenter comes to fit his door, he must
know its height with an uncertainty that is iess than 1 mm or so. However,
as long as the uncertainty is this small, the door will (for all practical
purposes) be a perfect fit, and his concern with error analysis is at an end.

1.3. Importance of Knowing the Uncertainties

Our example of the carpenter measuring a doorway illustrated how there
are always uncertainties in measurements. We will now consider an
example that illustrates more clearly the crucial importance of knowing
how big these uncertainties are.

Suppose we are faced with a problem like the one said to have been
solved by Archimedes. We are asked to find our whether a crown is made
of 18-karat gold, as claimed, or is a cheaper alloy. Following Archimedes,
we decide to test the crown’s density, knowing that the densities of 18-
karat gold and the suspected alloy are

Pgora = 15.5 gm/cm3
and

Panoy = 13.8 gm/cm3,
If we can measure the density p,,., , of the crown, then it should be possible
(as Archimedes suggested) for us to decide whether the crown is really
gold, by comparing p,,,., with the known densities Peota and pyyy,, .

Suppose we summon two experts in the measurement of density. The
first expert, A, might make a quick measurement of Perown and report that
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his best estimate for p,,.w, 18 15, and that p_,., almost certainly lies some-
where between 13.5 and 16.5 gm/cm®. Expert B might take a little longer,
and then report a best estimate of 13.9 and a probable range from 13.7 to
14.1 gm/cm?. The findings of our two experts can be summarized as shown
in Table 1.1.

Table 1.1. Density of crown (in gm/cm?).

Measurement reported Expert 4 Expert B
Best estimate for p . own 15 13.9
Probable range for p ., un 13.5to 16.5 13.7to0 14.1

The first point to notice about these results is that although B’s measure-
ment is much more precise, A’s measurement is probably correct also.
Each expert states a range within which he is confident p,,,,, lies, and
these ranges overlap; so it is perfectly possible (and in fact probable) that
both statements are correct.

The next point to notice is that the uncertainty in 4’s measurement is
so large that his results are of no use. The densities of 18-karat gold and of
the alloy both lie in his range, 13.5 to 16.5 gm/cm?; so it is impossible to
draw any conclusion from A’s measurements. On the other hand, B’s
measurements indicate clearly that the crown is not genuine; the density
of the suspected alloy, 13.8, lies comfortably inside B’s estimated range of
13.7 to 14.1, but that of 18-karat gold, 15.5, is well outside it. Evidently, if
the measurements are to allow a conclusion, the experimental uncertain-
ties must not be too large. However, it is not necessary that the uncertain-
ties be extremely small. In this respect our example is typical of many
scientific measurements, where uncertainties have to be reasonably small
(perhaps a few percent of the measured value), but where extreme precision
is often quite unnecessary.

Since our decision hinges on B’s claim that p,,,, lies between 13.7 and
14.1 gm/cm?, it is important that B give us sufficient reason to believe his
claim. In other words, the experimenter must justify his stated range of
values. This point is often overlooked by the beginning student, who
simply asserts that his uncertainty was 1 mm, or 2 sec, or whatever, omit-
ting any justifications. Without a brief explanation of how the uncertainty
was estimated, the assertion is almost useless.

The most important point about our two experts’ measurements is this:
like most scientific measurements, they would both have been useless, if
they had not included reliable statements of their uncertainties. In fact,
if we knew only the information on the top line of Table 1.1, not only



