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Preface

This text is.intended for the first course in electric circuit analysis.
It presumes that the student is proficient in algebra and trigonometry
and has had some experience with complex numbers. The student
should have had an introduction to differential and integral calculus,
and should be continuing his studies in calculus. This text develops the
solution of linear differential equations with constant coefficients by
both the classical and Laplace transform methods on the basis that
the student has not yet encountered these in his mathematics courses.

In order that the student may verify some of the deductions from
the circuit model, and gain some appreciation for its shortcomings, a
concurrent Jaboratory course is considered essential. Also, a college
physics course prior to, or concurrent with, this course is considered
highly desirable.

A new text in an established discipline usually comes into being
because some ‘teachers have felt strongly that a change in sequence
or emphasis would improve the learning process. If such feelings lead
to the creation of class notes and if such notes survive several years
of class use with the resulting revisions, these notes may appear in
book form. Such is the case for this text.

We had found that our students did not properly relate the time
domain, the phasor domain, and the Laplace transform domain. The
reason seemed to be that these subjects were often studied in isolation,
the student not being required to relate these in a given situation. Also
there was considerable confusion concerning the relationships, if any,
between the symbol s of the Laplace transform, the symbols p or D
used as differential operators, and the symbol s used as the exponent
for the complex exponential driving function, 4e*. Also students did
not usually realize the close relationship between circuit theory and
electromagnetic field theory. The latter condition arises because most



texts on circuit theory do not stress this relationship and, unfortunately,
neither do most texts on field theory.

The sequence of material in this text was selected with the hope that
an improvement in the learning process would result. We have the
feeling that this is so.

Chapter 1 is a short chapter whose purpose is to state rather con-
cisely the important relationships in field theory on which circuit
theory is based. We urge the student to read this chapter carefully,
but not to be concerned if he feels a lack of understanding of the
mathematical expressions known as Maxwell’s equations. He will
become more familiar with these equations in courses on electro-
magnetic field theory. In Chapter 2 circuit elements are defined and
laws and conventions are stated. The dependence of these definitions
and laws on electromagnetic field theory is shown whenever this is
possible.

From a mathematical point of view, linear circuit theory requires
the solution of linear differential equations with constant coefficients.
There are two important methods of solution: the classical method
and the Laplace transform method. The classical method has the
advantage of requiring (and giving) physical insight; the Laplace
transform method has advantages which arise from the facts that the
differential equations are transformed into algebraic equations and
that initial conditions are immediately incorporated into these equa-
tions. In order that the student may acquire both the physical insight
of the phenomena and a mastery of the techniques in arriving at
correct solutions, he is introduced to both methods as early as possible.
He is then required to solve many problems by both methods over an
extended period of time. Chapter 3 introduces the student to the two
methods and gives some practice in solving simple problems by both
methods. Additional practice in obtaining complete solutions by use
of the two methods is provided in Chapters 9 and 11.

The early introduction of the Laplace transform permits the early
presentation of the transform circuit and the definition of transform
network functions. These allow the presentation of general circuit
reduction methods and theorems, thus avoiding the learning of de-
finitions and techniques which must later be modified because they
were not general enough. These methods and theorems are presented
in Chapter 4.

Chapter 5 is concerned with the development of the phasor domain
and some of its applications. The main development is from the
classical method, although the development from the transform domain
is also shown. Chapter 6 deals with the loci of phasor network func-
tions for a variable element and with the frequency characteristics
of network functions. Because of the large amount of nomenclature
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and techniques in circuit theory, the driving functions have been
limited thus far to sinusoids. In Chapter 7 these are extended to general
periodic functions by use of Fourier series; however, in this chapter
we limit the solutions to steady-state solutions. Chapter 8 is devoted
to three-phase circuits under steady-state conditions, the previous
introduction to Fourier series permitting the consideration of harmonic
voltages and currents. The study of three-phase circuits causes the
student to appreciate the usefulness of phasor diagrams.

In Chapter 9 complete solutions are obtained for pulses of various
types by both classical and transform methods. Also the subject of
impulses is presented primarily from a physical stand-point.

Analogues are not introduced until the last chapter because our
experience indicates that the student needs to have a good com-
prehension of the language and techniques of one discipline if he
is to relate these to a new discipline. This is particularly true if one
expects the student to label variables, write equilibrium equations,
and determine initial conditions in this new discipline.

We have tried to use standard symbols wherever possible. We have
not used boldface to represent complex quantities, since this cannot be
used by instructor or student. A complex quantity is designated by a
caret (+) over the quantity. Thus we use i = /cos (vt + «) = Re (fe'),
in which / = Je’*, A detailed list of symbols is given at the beginning
of the book.

Boulder, Colorado, 1965 S. I. PEARSON
G. J. MALER
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1 Electromagnetic Field Theory'

1.1 INTRODUCTION

The student’s background in physics or chemistry, as well as his
experiences in this age of science and engineering, have given him
certain concepts of electricity and magnetism. We shall start with
these concepts, expand on them, and then introduce the laws of electro-
magnetism which are known as Maxwell’s equations. It is on these
equations that electric circuit theory is based; we should have at least
a nodding acquaintance with them if we are to have a good relationship
with circuit theory.

To most of us the concept of electric charge is basic to the structure
of the atom. Each of the building blocks of matter, such as protons,
neutrons, electtons, mesons, etc., is characterized by two properties:
its “‘rest mass” and its electric charge. This charge may be of two kinds
which are arbitrarily called positive and negative, the charge of the
electron being negative. Charge is quantized; that is, charge occurs in
packets, the smallest one of which is equal to the charge on an
electron. The effect of these atomic charges is extremely important in
determining the mechanical, chemical, and electrical properties of
materials.

Forces exist between charges; in fact it is because such forces were
observed that the concept of charge was postulated. Probably all of
us have seen the demonstration of force between charged pith balls

! It is intended that this chapter give a qualitative insight to field theory so that the
student may find that a definite and significant relationship exists between field
theory and circuit theory and that circuit theory is an approximation to field theory.
It is not intended that this material be construed as an introductory course in field

“theory. Consequently, it is anticipated that only one, or possibly two, class periods
be devoted to its consideration.



and noticed that like charges repel, unlike charges attract. Such forces
are called electric forces. If the charges are in motion relative to each
other and to the observer, additional forces are observed. These forces
are called magnetic forces, magnetism thus being associated with mov-
ing electric charges or electric fields changing with time.

There is a mystery about forces which “act at a distance” such as
those of electricity and magnetism. Such phenomena seem less mysteri-
ous if it is postulated that a field is associated with each charge and
that forces are the result of reaction between charge and field. Such
fields were first proposed by Faraday and were then adopted by
Maxwell in his electromagnetic theory. We are accustomed to some
terms involving fields; in particular, we speak of the earth’s magnetic
field and are aware that a compass will point toward the north magnetic
pole.

With regard to the student’s experience with electricity and magnet-
ism, he has surely received a shock after walking on a rug and learned
that charges were separated by friction. He has observed lightning
which is believed to be a similar phenomenon on a grand scale, the
separation of charge here being caused by relative motion of water
particles and air. He knows that energy can be transmitted most
efficiently in the form of electromagnetic energy; that power-generating
stations are able to convert the energy of combustion of fossil fuels
or the energy liberated by nuclear fission into electromagnetic energy,
and that somehow this energy can be guided by transmission lines to
industries and homes. This transmission usually occurs with voltages
and currents varying sinusoidally with time at 60 cycles per second
(cps), transformers being used to change the voltage level so that the
voltage level in the homes will be relatively safe while high voltages
are used for economic transmission of large amounts of power.

Electromagnetism also has a major role in communications. Tele-
phone, telegraphy, radio, and television are all examples of the applica-
tion of electromagnetism. In some of these instances, wires are used
to guide the signal transmission. In others, such as radio or television, no
wires are needed to guide the energy; the energy radiates in a fashion
similar to that of the light radiated from a candle or electric lamp.
In fact the student may know that light is simply that portion of the
electromagnetic frequency spectrum to which our eyes are sensitive.
Thus electromagnetism covers all the frequency spectrum from zero
frequency or direct current through radio frequencies, light frequencies,
x-rays, and gamma rays.

Electromagnetism has many applications in industry, in controls,
in instrumentation, and in computers. In fact it is hard to find a seg-
ment of modern life in which electromagnetism is not playing an
important role.



1.2 A DISCUSSION OF LAWS AND UNITS

What are the laws of a science which deals with such a wide range
of phenomena, from the interaction of atomic particles to communica-
tion between distant points of the earth, or to radiation from distant
galaxies? What do we mean by laws in the first place?

In a physical science we think of the laws as a group of relationships
which are consistent among themselves and which lead to conclusions
that are in accord with experimental evidence. Also we use the term
“fundamentals” or fundamental laws as a minimum group of relations
which may be considered basic and from which other relations or laws
may be derived. Thus what one person calls fundamental need not be
the same as what another person calls fundamental as long as there is
agreement on the total group of relationships. For example, in mech-
anics one person may start with force relations as fundamental and
then “derive” energy relations; while another person may start with
energy relations and then derive the force relations. A third person
may well observe that the first two are simply proving that their total
groups of relations are consistent. '

Since our measuring abilities improve with time, we would expect
that physical laws need to be modified as time progresses. A good
illustration of this modification is again in the area of mechanics in
which Newton’s laws have been dominant for many years. However,
it has been found necessary to modify Newton’s laws in accord with
relativistic principles when relative velocities are not negligible in com-
parison with the velocity of light. Also it has been found necessary to
use quantum mechanics to predict phenomena in the case of small
magnitudes corresponding to the atomic and nuclear domains. These
modifications do not invalidate Newton’s laws for a large group of
practical cases; in fact both relativistic mechanics and quantum mech-
anics are in accord with Newton’s mechanics for these cases.

Maxwell’s equations have a similar relation to electromagnetic field
theory that Newton’s laws have to mechanics. Newton’s laws do not
apply to atomic or nuclear realms because the laws do not recognize
that mass (energy) occurs in discrete amounts (quanta); Maxwell’s
equations similarly do not apply in these realms because the equations
do not recognize that charge occurs in discrete amounts.

We shall not follow the historical or experimental approach to
electromagnetism. Such an approach would possibly start with Cou-
lomb’s law of force between point charges and the law of force between
two current carrying conductors and then proceed to the observations
of Ampere, Kirchhoff, Gauss, Faraday, and others. Maxwell? in

2 A Treatise on Electricity and Magnetism, by Clerk Maxwell, Unabridged Third
Edition, reprinted by Dover Publications, New York, 1954.

Electromagnetic Field Theory 3



considering the “fundamental” laws of electricity and magnetism as they
were known in his day, observed that these laws were not consistent
mathematically, added a term to make them consistent and deduced
that electromagnetism was a wave phenomenon having the velocity
corresponding to that of light. His brilliant deductions have been
confirmed and his contribution is considered such a “breakthrough”
that the modified laws are known as Maxwell’s equations. Thus it
seems appropriate to start with Maxwell’s equations as basic
postulates, for in a real sense they are not derived. There are also
energy relations in electromagnetism; however, we shall not try to
prove that these energy relations are consistent with Maxwell’s equa-
tions and the concepts of conservation of charge and energy. Such
proofs properly belong in a course on electromagnetism. We shall
simply accept all these relations as representing a consistent group of
laws.

Maxwell’s equations are expressed in terms of field quantities. The
electric field is postulated to have a flux, y, a flux density D,® and a
field intensity E. The magnetic field is postulated to have a flux, ¢, a
flux density B, and a field intensity H. If the medium is isotropic,
D and E are in the same direction; that is, D = eE, in which ¢ is a
scalar quantity called permittivity. Similarly, for an isotropic medium,
B = uA, in which p is permeability. If ¢ and x are constants, inde-
pendent of the magnitude or direction of the field quantities, the
medium is said to be linear. If ¢ and u are independent of location in
space, the medium is said to be homogeneous. The concept of flux
and field intensity may seem strange and a person may be prompted
to ask whether these quantities are real. They are as real as other
useful concepts. We cannot see mass, nor do we know what it is, but
yet we willingly accept the concept of mass because this is helpful in
predicting the behavior of material objects. The same observation may
be made for the concept of charge. And so we should accept these
postulates of flux and field intensity as useful concepts in predicting
electromagnetic behavior.

A consistent set of units is very important. We shall use only the
rationalized meter-kilogram-second (mks) system of units. Occasion-
ally, dimensions may be given in English units; these should be changed
to meters before insertion into equations. The mks system of units
has been adopted internationally and has many advantages over other
systems. One of these advantages is that many practical units such as
ampere, volt, watt, and joule are units also in the mks system. Essenti-
ally all modern literature of significance in circuit theory is in the mks
system of units. Recent literature in electromagnetic field theory is

3 The bar over the quantity indicates that the quantity is a vector.



1.3

primarily in the mks rationalized system of units. The word ‘“ration-
alized”” implies that Maxwell’s equations have no constants other than
unity; the word “unrationalized” implies that a factor of 4 appears in
two of Maxwell’s equations. There are only a few quantities that have
different magnitudes in these two systems of units. These are D, H, e,
and u; these differ by the factor 4=. For all circuit quantities there is
no difference between rationalized and unrationalized systems of units.

We sometimes consider a particular group of units to be a funda-
mental set, the other units being expressed in terms of these funda-
mental units. In mechanics it is customary to consider mass, length,
and time as fundamental units and then express other quantities such
as force, velocity, power, and energy in terms of these units. A dimen-
sional check of an expression or equation is then sometimes useful in
detecting an error. In electromagnetism, three fundamental units are
not enough; it is necessary to add a fourth unit. This unit is frequently
charge; one sometimes sees reference to the mksq system of units.
However we seldom make a dimensional check in terms of these units;
it is usually easier to assure ourselves that each term of a given ex-
pression has the same units, such as volts, amperes, or ohms.

THE LAWS OF ELECTROMAGNETISM (MAXWELL’S
EQUATIONS)

There are only four relations which are considered to be the laws
of electromagnetism and known as Maxwell’s equations. The first two
are concepts about magnetic and electric flux, the last two are con-
cerned with the closed line integrals of field intensities. These laws
may be expressed as follows.

(a) Magnetic flux is continuous; that is, this flux has no beginning or
end. The expression for the magnetic flux, ¢, passing through an area a
may be calculated from the surface integral,

¢=f1§-dﬁ,

in which dd is a vector differential area and B - dd is the scalar product

of two vectors meaning Bda cos < ¢ has the units of webers and

B

da’
B has the units of webers per square meter. Fig. 1.1 shows the magnetic
field about a long wire carrying a conduction current shown going
into the paper. The direction of conduction current is taken to be the

direction of motion of positive charge.
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FIG. 1.1 Magnetic field around a current, i.

One way of expressing this law mathematically is to say that the
net flux leaving a closed surface must be zero. Thus,

jﬁﬁ-da=o, (L.1)

in which now the direction of da is taken to be outward from the
volume enclosed and the circle about the integral sign means that the
integration is over a closed surface.

(b) Electric flux may be continuous or may terminate on electric charge.
In the latter case, the amount of flux leaving a closed surface is equal
to the charge enclosed, which implies that flux leaves a positive charge
and enters a negative charge. An example of electric flux being continu-
ous would be the electric field of a dipole antenna at a distance which
is large in comparison with a wavelength (see Fig. 1.2). An example
of the electric field terminating on charge is the field between the two
conductors of a direct current (d-c) transmission line, as shown in
Fig. 1.3.

JL

FIG. 1.2 Electric far field of
antenna.

Electric flux, y, has the units of coulombs and electric flux density,

D, has the units of coulombs per square meter. We may express this
law mathematically as

§D-dd=q, (12)

in which g is the charge enclosed by the closed surface.
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FiG. 1.3 Electric field about two d-c
conductors.

This law is known as Gauss’s law for electricity or simply as Gauss’s
law and is treated extensively in most physics texts.*

(c) The closed line integral of the electric field intensity, § E - dI, is
equal to the negative time rate of change of the magnetic flux which
links the closed line, the positive direction of magnetic flux being in the
direction of the thumb of the right hand if the fingers of this hand are in
the direction of the integration. The designation d/ is a vector differential
displacement, and the circle about the integral sign means that the
integration path is such that it returns to its starting point. In the
sketch shown in Fig. 1.4, if ¢ is increasing with time in the direction
shown, we will obtain a negative value for § £ dl. The units of E
are voltsiper meter, and thus the units of § £- dl are volts or joules
per coulomb.

¢

FIG. 1.4 Magnetic flux linking a closed line. al

The magnetic flux linked by the closed line may be designated
fﬁ da, in which the area a is the area bounded by the closed

line. We need to dlstmgunsh between magnetic flux, ¢, and magnetic
flux linkage, A’, since the linkage is found by integrating flux density
over the area bounded by some closed line and since a particular
quantity of flux may cross this area more than once. This latter con-
dition is illustrated in Chapter 2, Fig. 2.17, page 41.

This law may then be written mathematically,

> i
E dl=Sp=-% .
§ dl v . (1.3)

1 See, for example, David Halliday and Robert Resnick’s, Physics for Students
of Science and Engineering, Part 1I, Second Edition, Wiley, New York, 1962,
Chapter 28.
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