ADVANCES IN
'PARALLEL COMPUTING

A Research An\n'ua!

VOLUME 2 « 1992

ADVANCES IN
PARALLEL COMPUTING

A Research Annual

Editor: DAVID). EVANS
Parallel Algorithms Research Centre
Department of Computer Studies
Loughborough University of Technology

VOLUME 2 « 1992

@ JAI PRESS LTD

tondon, England Greenwich, Connecticut

LIST OF CONTRIBUTORS

Barbara Bleck
Calvin ChingrYLiéh Chen
Sajal K. Das

David J. Evans

A. M. Davies

R. B. Grzonka

G. Isern

Henner Kroger

Department of Informatics
Justus-Leibig University of Giessen
Qessen Germany

‘rtment of Computer Science
University of North Texas
Denton, Tex., U.S.A.

L Dq;ﬁrtment of Computer Science

L Unjversity of North Texas
. Denton, Tex,, US.A.

Parallel Algorithms Research Centre
Department of Computer Studies
Loughborough University of Technology
Loughborough, England

“Proudman Oceanographic Laboratory
. Bidston Observatory
‘»Whead England

‘ Sowetby Research Centre

Computational Physics Department
British Aerospace (Dynamics) Ltd
ﬁlton Bristol, England

. School of Computing
" University of Venezuela

Caracas, Venezuela

. Department of Informatics

Justusetelbig University of Giessen

‘Giessen, Germany

vii

&

vii LIST OF CONTRIBUTORS

D. G. Maritsas Department of Computer Engineering an
Computer Technology Institute
University of Patras
Patras, Greece

G. M. Megson : Computer Laboratory
P University of Newcastie-upon-Tyne
England
E. Montagne School of Computing

University of Venezuela
Caracas, Venezuela

Geerge T. Papaspyropoulos Department of Computer Engineering an
: N Computer Technology Institute
University of Patras
Patras, Greece
R. K. Sen Department of Computer Science
Hampton University
° Hampton, Va., US.A.
C. V. Stephens NERC Computer Services
: Bidston Observatory
r Birkenhead, England

. v

R. Suros ~ School of Computing
University of Venezuela
Caragas, Venezuela

P. Willet DEpartment of Information Studies
' University of Sheffield

England

PREFACE

The demand for more powerful computers has increased unabated since the

inception of the early von Neumann computers. This is undoubtedly due to
the universality of the design of the general purpose digital computer and its
widespread applicability to the scientific, technological and commercial prob-
lems which are encountered in present day society.

This need for additional processing power is likely to continue within the
foreseeable future because of the increased complexity and sophistication of
the software systems we use and expect nowadays. End-user environments
based on graphics and agile windowing -techniques, desk-top publishing,
database applications and the use of expert systems and artificial intelligence
in knowledge-based applications have all assisted in this growth. Further,
fourth generation software tools provide increased user efficiency but do so
by the liberal use of computational power.

The benefits of general purpose parallel architectures are all exposed in the
papers presented in this volume. These can be summarized briefly as:

Cost: Since parallel machines can be constructed from multiple, standard
components and offer an economical way of providing large amounts of
proccssmg power, they suffer less degradation in response time as user
demand increases.

Growth: A system based on multiple components can be expanded slmply
by the addition of further components providing an economical and less.
disruptive upgrade evolutionary route with the additional benefits of fault
tolerance if any of the processors fail.

ix

X PREFACE

The chapters in Volume 2 of Advances in Parallel Computing again cover
a wide spectrum of parallel computing issues ranging from parallel searching
in databases, parallel simulation, numerical and non-numerical parallel algo-
rithms and dataflow, cellular and systolic parallel architectures.)

Finally I should like to thank the contributing authors for their prompt
and cooperative support and my secretary Mrs. Judith Poulton for her
skillful organization in making this publishing venture a painless and worth-

while task. .
David J. Evans
Series Editor

CONTENTS

LIST OF CONTRIBUTORS
PREFACE

APPLICATIVE CACHING AND
A DATA FLOW COMPUTER
R. K. Sen

DATABASE SEARCHING USING
ARRAY PROCESSCRS
Peter Willet

- ON TRAVERSI G TREES IN PARALLEL
Calvin Ching-Yuen-Chen and Sajal K. Das

PARALLEL DISCRETE EVENT SIMULATION WITH
SIMULA: A CENTRALIZED DEADLOCK-FREE
ALGORITHM

D. G. Maritsas and

George T. Papaspyropoulos

CELLULAR ALGORITHMS
Barbara Bleck and Henner Kroger

IMPLEMENTATION OF A THREE-DIMENSIONAL
HYDRODYNAMIC NUMERICAL SEA MODEL
USING PARALLEL PROCESSING ON A
S:R_AY X-MP SERIES COMPUTER
““"\A. M. Davies, R. B. Grzonka and

C. V. Stephens

VLS| SYSTOLIC ARRAYS FOR TABLE
BASED ALGORITHMS
GC. M. Megson and D. . Evans

il

23

47

81

115

145

187

vi

A DETERMINISTIC MODEL FOR SPATIAL DATA
SCHEDULING ON SYSTOLIC ARRAYS

E. Montagne, R. Surés and C. Isern
INDEX

291

305

APPLICATIVE CACHING AND A DATA

"FLOW COMPUTER
. . - ;':’%r) i

~ R.K.Sen

ABSTRACT - -

Applicative caching typica'py reduces reevaluation of functions in a recursive
- program. This can in effect be beneficial in reducing resource demand in a
dataflow parallel computer. Here a discussion of implementing applicative
caching in a list processing oriented dataflow computer has been presented. A
stream based computation has been assumed and the necessary functions for
applicative caching in this machine have been devised. :

1. INTRODUCTION

~ Conventional programming languages and von Neumann computers have
developed closely. On the other hand, at the beginning of the popularity of
applicative or functional languages, first introduced in 1965 by McCarthy
{32] and Landin {31}, efficient computing support was not available.

With a wider usage of computers and the urgent need for better methods
of software engineering, several bottlenecks of the von Neumann computer
became explicit [13]. The operational semantics of programming languages
associated with the von Neumann model promoted multiple assignment of

Advances in Parsliel Compating, Volume 2, pages 1-22
Copyright © 1992 by JAI Press Ltd

Al rights of reproduction in any form reserved.

ISBN: 1-55938-274-0

2 . ‘ ' R. K. SEN

values to expressions. Although initially a useful notion, it causes difficulty
in having a simple method for program verification and design [27].

“The main idea of applicative programming, that programs can be built
entirely from equations defining functions, began with Lisp.- Lisp pioneered
applicative programming and included some non-applicative features like
assignment statements and eventually object-oriented programming [41).
Nevertheless, during the past two decades research in applicative program-
ming has not been lacking, resulting in the design of languages such as
Miranda by Turner [38].

Applicative programming provides a better mathematical basis for verifi-
cation of programs [20}. This is because of the inherent cleaner semantics. It
does not support multiple assignment thereby assuring that the value of an
expression remains unchanged whenever it is used. This is called ‘referential
transparency’. Moreover, there is a growing body of knowledge on structural
properties of programs together with the algorithmic aspects that has resulted
in a renewed interést in the use of applicative programming today [20).

The basic mechanism of computation for processing applicative language
program is known as reduction. Models of reduction based computation has
been developed foHowing Church’s lambda calculus and Curry and Fey’s
scheme for single argument, which can itself be a function, function evalu-
ation (combinator theory) [15].

There have been attempts to implement reduction based computation
on von Neuman architectures. SKIM II is an efficient implementation of
Turner’s combinator reduction machine {39]. Kieburtz, in ‘The G-machine’
describes an implementation of the architecture of a reduction machine that
uses supercombinators (programmable combinators) {23]. The G-machine,
an abstract model for evaluating functional language program, was defined
by Johnsson and Augustsson {12, 25]. The G-machine is an evaluation model
for a complier for a dialect of ML [33] called Lazy ML. The abstract model
represents an expression as a graph and throughi successive transformations, or
reductions, modifies the graph until its form is that of a fully evaluated resuit.

A growing interest in parallel computing today, due to the dramatic
reduction in cost of building machines with several processors together with
the realization that the physical limit of computing speed can only be over-

- come by having several computers work on the same problem, has motivated
workers in designing novel methods for exploiting parallel computers. The
availability of considerable knowledge has led people to construct such
computers by putting together muitiple copies of the von Neumann compute:.
On the other hand, following a ‘software first’ approach aiternative par.iicl
architectures have also been designed [24].

Implicit parallelism in applicative programs is easier to detect tia:t in con-
ventional languages [19]. Considerable research in implementing applicative
languages for parallel von Neumann architectures has been carried out [22].

Applicative Caching and a Data Flow Computer 3

In these approaches paraliel computation is based on a process (task) model
[21] and tends to favor large grain parallelism because of the overheads of the
tasking mechanism. Moreover, the parallel version of programming language
imposes the need for the programmer to know the operational aspects of the
parallel computer which becomes intractable when hundreds of processors
are employed.

Kennaway and Sleep [30] developed a general architecture model that
consists of a number of processing elements and two pools of waiting and
selected tasks. Selected tasks from the waiting pool are put into the selected
pool to be chosen by the processing elements. The processing elements pick
up subexpressions (selected tasks) for evaluation (reduction). In this model
the conventional program counter of the von Neumann architecture is replaced
by a set of tasks picked up by the processors for execution. The model
specifies two alternative implementation schemes for beta substitution (a step
in combinator reduction)—use of pointers or making copies of expressians.

Kenneway and Sleep categorized the new architectures as pipelined ring
architectures, packet circulation ring architectures, physical tree archlgecture,

and sequential reduction machines. The basis of the categorization are

Manchester Dataflow machine [40] and MIT Static Dataflow machines, early
ALICE implementation [39], FFP machine [39], AMPS [28], DDMI [39]
GRIP {39] and SKIM G-machine.

The static dataflow architecture first proposed by Dennis [34] with VAL [l]

as the basic programming language mainly attempted to offer mcreascd ,
throughput for scientific applications with high inherent parallelism. Subse; -

quently, methods of handling issues pertaining to function invocation,
recursion, and structure handling were incorporated in the static dataflow

architecture [17). A VAL Interpreting Machine (VIM) that interprets the

data flow program graphs has been built. It provides support for data
structures like streams using early completion data structures and suspen-
sions, and tail recursion is used to avoid unnecessary retention of activation
records when iterations are to be implemented. In the dataflow architecture
a computation is represented as a program graph. Every time a function is
applied a copy of the function graph is incorporated into the calling program
graph. This implies that for a computation involving several function calls a
graph structure of unmanageable size may result. The dynamic dataflow
architecture called Tagged Token Data Flow by Arvind [2, 7-9] instead allows
different function invocation to be represented in terms of tagged (also calied
coloured) tokens thereby avoiding the cost of interpreting large program
graphs. The dataflow architecture developed at Manchester University and
known as the Manchester Dataflow architecture subscnbes to the dynamic
dataflow concept [39).

Datafiow machine can be used to implement graph reduction by havmg,:
suitable compilation techniques to transform a functional program to datafiqw

4 R. K. SEN

graphs so that it implements graph-reduction semantics. The fundamental
thrust is to implement graph-reduction by avoiding the need to build too
large dataflow graphs. This is because building graphs is fundamentally an
interpretive mechanism, and consequently expensive compared to compiled
code. Work in compiling functional programs into Id (the dataflow language
for the tagged token architecture at MIT) programs are being investigated by
Nikhil [35]. It requires some extension to both the programming language Id
as well as the dataflow architecture to support synchronizing updates to
structure memory (the structure memory of the tagged token architecture).

Amamiya et al. designed a dataflow machine for a list processing machine
{4]). This architecture is basically data driven and can perform list processing
in a highly parallel and pipelined fashion. The architecture supports pure
Lisp, where except for cons no other function has side-effect. The cons is
implemented in terms of lenient evaluation and called lenient cons. This
allows partial evaluation of function. Partial function evaluation is related to
the idea of reduction-based computation. A dataflow machine with partial
function evaluation capability implicitly possesses the same abilities as reduc-
tion computers. Amamiya’s architecture thus supports a form of reduction
suitable for applicative programming.

Due to a highly parallel computing environment, dataflow computers, in
general, adhere to the single assignment rule. Thus datafiow languages are
applicative in nature. A salient feature of a data flow computer is that it has
a decentralized control which is defined dynamically according to the availa-
blity of data that enable, and hence fire instructions. The execution of a
program is carried out in a highly concurrent manner where concurrence may
be implicit. According to Sleep and Kenneway’s categorization of parallel
architectures for parallel reduction, dataflow systems appear towards the
extreme end of fine granularity. It may be noted that fine granularity inherent
in early dataflow systems were the subject of intense criticism due to the
overall demand of resource management. Exposing parallelism tends to
increase resource requirement [10]. Automatic program unfolding [S5, 8, 39], if
unconstrained, may expose far more parallelism than the machine can exploit
and may suffer performance degradation. Moreover, unravelling and acti-
vation of all possible tasks may lead to deadlock [10]. Methods that can
reduce the number of function activations need to be developed.

In an applicative programming environment for a recursive program a
method for reducing resource demand involves eliminating recomputation.
Keller and Sleep [29] presented syntactic and semantic mechanisms for
implementing a scheme by which recomputation can be avoided. This is
called applicative caching. Dataflow systems provide an avoplicative program-
ming environment and recursive application programs are quite common.
This prompts the use of applicative caching in a dataflow machine to reduce
resource demand in general. The main issue in applicative caching is the

Applicative Caching and a Data Flow Computer 5

efficient implementation of the cache. This entails the use of suitable
data structures and enforcing applicative environment. As the dataflow
systems do not inherently support the caching mechanism the problem of
providing applicative caching with primitive dataflow instructions is not
straightforward.

In order to study the essential issues involved in implementing applicative
caching in a dataflow computer, the architecture of Amamiya seems to be
the most appropriate. Amamiya’s model supports list data structures, an
essential component of a stream cache—the simplest applicative cache. The
main reason for choosing Amamiya’s architecture is the ease of encoding
stream handling programs. Although other dataflow architectures handle
structures quite efficiently, the basic list processing capabilities of this
architecture seem more attractive for the purpose.

2. A DATA FLOW MACHINE FOR LIST POSSESSING

In a dataflow machine all operations can be executed concurrently when all
of their operands are present (concurrency). The result of an operation
depends on the values of its operands and is not affected by execution of other
operations, and the history of the execution (functionality). The execution
sequence of operations is decided based only on data dependency, and hence
a centralized sequence control is unnecessary (distribution). By list processing
one essentially means non-numeric applications. To apply dataflow mode of
computation in non-numeric applications it is necessary to solve the problem
of structur.d data manipulation with particular reference to lists. For
preserving functionality the single assignment rule need to be enforced. This
entails structures needing to be copied every time they are used.

Amamiya’s dataflow architecture attempts to execute Lisp mainly because
it provides the succinct basis for list processing. The brici description of this
architecture is given below.

The architecture has five components: control modules (CMs); an inter-
CMs communication network (CN); structure memory (SM); an instruction
network (IN); and a result network (RN) as shown in Figure 1.

The CM is the kernel of the data flow execution. It consists of a memory
that stores machine instructions. It also has the fetch mechanism for
enabled instructions. The CN connects the CMs with each other. The SMs
store the structured data such as lists. The IN and RN connect the CMs
and SM. ' '

List structured data are stored in the SM and their pointers flow in the
machine as tokens. Here, by-reference mechanism [3] is used and a cell having
attribute of a variable, list or pointer flow in the system.

6 . .o R. K. SEN

COMMUNICATIONS NETWORK (CN)

v+ 14 Yy ¢

M M2 CMn

! t

RESULTS NETWORK (RN)

I I I

INSTRUCTIONS NETWORK (IN)

1 ' '

SM1 SM2 | smn

Figure 1. Amamiya’s dataflow machine organization.

The architecture supports pure Lisp primitive instructions like Cons, Car,
Cdr, Atom and Equal. All instructions except Cons all are side-effect free.
Cons gets a new cell after communicating with the resource manager and
returns a pointer to it. The car and cdr fields are written leniently. Hence the
name lenient cons. There is no updating of a field and hence no multiple
assignments. List processing is regarded as memory operations which mainly
contains readout operations.

Memory contention and side effects are serious for exploiting parallelism
in list processing. The memory contention is resolved by dividing the struc-
ture memory into banks. For each bank there are primitive operators,
thereby enhancing parallelism among operatlons An outline of the structure
memory is shown in Figure 2.

Partial function body evaluation is inherently supported by this architecture.
Partial function-body execution refers to the fact that the execution of a
function is started whenever one of its argument value is obtained, and the
execution of the function-body proceeds partially every time the value is
passed in. Any function invocation overhead, such as assigning a function-
body to a processing element, passing arguments and passing information
-regarding destination of a value etc., can be overlapped with the evaluation
of arguments. Some functions can proceed with the execution using a part of

Applicative Caching and a Data Flow Computer . 7

-TTTTTT- s T A

Ref block Car block Cdr block

Figure 2. The structure memory.
)

the arguments, for example a cond. In addition, the function results can be
returned to the caller as soon as they are obtained. This overlapping results
in a more efficient function evaluation environment.

In order to process recursive function call and to support a higher order
function the list-processing dataflow machine adopts a dynamic function-
linkage mechanism using the link and rlink dataflow operators. Function
bodies are shared using colored token approach. A token packet is expressed
as {instance-name, data) destination
The call node is initiated by a signal token, and creates a new instantiation
name. The call node creates the function body if it does not exist. Otherwise
it creates only an instantiation name. When the function-body is ready to
run, the token with new instantiation name is sent to link and rlink nodes of
the dataffow graph. The link and rlink nodes are interface operators that
creates packets for sending or receiving arguments and résults. Each fink
node creates a packet with the new instantiation of the argument token and
passes it to the input port of the function-body. The rlink node creates a
packet with the new and current instantiation and the destination name along
with the name of the output port of the function-body. Note, that this
implements partial evaluation of function because whenever a result value
(partial) is obtained the function need not wait for other results.

When list data structures are created with cons or append and then con-
sumed dynamically, the consumer function, must wait until the producer
creates the entire list. However, if each element of the list is returned every
time it is generated, the execution which uses it can proceed without waiting.
This results in the producer and consumer to overlap. For this the concept
of lenient cons is introduced.

8 .. RKSEN

signai

x Y

WR)TECAR WRITECDR

Y

z= cons(x,y)

GETCELL

Figure 3. Cons operator.

The cons operator is decomposed into three primitive operators—getcell,
writecell and writecdr, as shown in Figyre 3. Figure 4 illustrates the data cell
structure. Each data cell has a garbage tag, car-ready and cdr-ready tags. The
garbage tag is used for reclamation of unused cells. The last two tags control
the read access to the car and cdr fields.

The getcell is initiated on the arrival of a signal token, which is delivered
when the new environment surrounding the cons operation is created. This
operator creates a new cell and resets both ready tags to ‘off” in order to
inhibit access. It then sends the new cell address to tlewritecar, the writecdr
and the nodes waiting for that cons value. When the ready tagis ‘off” it means
the value has not yet arrived.

The writecar (writecdr) writes the operand value x(or y) into the car field
(or cdr field) and sets the ready tag to ‘on’ to allow read accesses. Although
a cell may be referenced before a value is written (in such case the ready tag
is “off’) the reference is suspended until the writing is completed (i.e. the ready.
tag is set ‘on’).

Lenient cons implements stream processing feature. It is effective in
exploiting function-level parallelism. As can be seen it allows functions of a
tree evaluation type (e.g. recursive divide and conquer algorithm), or a linear

car field car fela

g chr attr car r|attry car

g . garbage collection tag rc . reference count
r: ready tag attr. attribute

Figure 4. A memory cell.

" Applicative Caching and a Data Flow Computer 9

evaluation type (e.g. simple tail recursion) to be c_mputed in linear time in
parallel. Since a function does not wait for the whole list to be completely
computed it results in better resource utilization than in a situation without
lenient cons.

Once a cell is created by a cons operation and a value is written into it the
contents are never modified. Other operations (other than cons) only read
from it. A new cell may be created at any location. The Car(Cdr) block has
ready tag, attribute field and car(cdr) pointer field. The ready tag indicates
whether the data has arrived or not. The attribute field indicates whether the
data is an atom (number or literal) or pointer (to an SM cell address). The
Ref block contains a garbage tag and reference count field. The Car(Cdr)
block operation unit performs read/write operations from/to the car(cdr)
field. The Ref block operation unit controls reference count management and
performs the getcell operation. A lenient operation is decomposed into the
operations of getcell, writecar, writecdr and gate (that finds lenient cons
result), each of which is executed in the Ref, Car and Cdr operation and the
functional unit of the CM respectively.

As list processing is considered as essentially a memory operation, efficient
memory operations is a key element. Memory contention and side-effect are
difficulties when attempting to exploit parallelism. In this architecture
pipelined and parallel memory access is available.

The copying overhead is minimized by distributing access to lists. New cells
are generated in such a way as to distribute cells uniformly in SM banks. The
uniform distribution is a result of language features like blocks, functions,
etc. Further details are available in {4, 5].

Independent memory access and pipelined list processing between execu-
tion control and memory operation can be achieved. The contention can be
avoided by dividing the SM into many banks and including an operation unit
for each memory cell. This is like the logic in memory concept. The structure
memory is regarded as a part of the functional unit. It executes list operations
except Atom and eq operations. The SM bank has three indpeendent blocks,
Ref, Car and Cdr blocks. This allows primitive operation level overiapping.
Each block has a specialized operation unit.

Efficient garbage collection in a data flow system is a difficult task.
The pointers to list data may be scattered in many parts of the machine
such as Instruction Memory, Operation Units, Networks, etc. It is difficult
to extract an active cell without suspending execution. A reference count
method is used in garbage collection, as there is no chance of getting any
circular list. There is basic machine instructions that help garbage collection.
The reference count field of a cell is explicitly undated by the manager
corresponding to the increment and decrement operations generated by
the compiler.

