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Preface

There are many interesting and challenging probleins in the area of classical
field theory. This area has attracted the attention of algebraists, geometers,
and topologists in the past and has begun to attract more analysts. Analyt-
ically, classical field theory offers all types of differential equation problems
which come from the two basic sets of equations in physics describing fun-
damental interactions, namely, the Yang—Mills equations governing electro-
magnetic, weak, and strong forces, reflecting internal symmetry, and the
Einstein equations governing gravity, reflecting external symmetry. Natu-
rally, a combination of these two sets of equations would lead to a theory
which couples both symmetries and unifies all forces, at the classical level.
This book is a monograph on the analysis and solution of the nonlinear
static equations arising in classical ficld theory.

It is well known that many important physical phenomena are the con-
sequences of various levels of symmetry breakings. internal or external, or
both. These phenomena are manifested through the presence of locally con-
centrated solutions of the corresponding governing equations, giving rise to
physical entities such as electric point charges, gravitational blackholes,
cosmic strings, superconducting vortices, monopoles, dyons, and instan-
tons. The study of these types of solutions, commonly referred to as solitons
due to their particle-like behavior in interactions, except blackholes, is the
subject of this book.

There are two approaches in the study of differential equations of field
theory. The first one is to find closed-form solutions. Such an approach
works only for a narrow category of problems known as integrable equa-
tions, and, in each individual case, the solution often depends heavily on
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an ingenious construction. The second one, which will be the main focus of
this book, is to investigate the solutions using tools from modern nonlinear
analysis, an approach initiated by A. Jaffe and C. H. Taubes in their study
of the Ginzburg-Landau vortices and Yang Mills monopoles { Vortices and
Monopoles, Birkhduser, 1980).

The book is divided into 12 chapters. In Chapter 1, we present a short
introduction to classical field theory, emphasizing the basic concepts and
terminology that will be encountered in subsequent chapters. In Chapters
2 12, we present the subject work of the book. namely, solitons as locally
concentrated static solutions of field equations and nonlinear functional
analysis. In the last section of each of these chapters, we propose some
open problems.

The main purpose of Chapter | is to provide a quick (in 40 or so pages)
and self-contained mathematical introduction to classical field theory. We
start from the canonical description of the Newtonian mechanics and the
motion of a charged particle in an electromagnetic field. As a consequence,
we will see the natural need of a gauge field when quantum mechanical
motion is considered via the Schrédinger equation. We then present spe-
cial relativity and its action principle formulation, which gives birth to
the Born Infeld theory, as will be seen in Chapter 12. We also use spe-
cial relativity to derive the Klein—Gordon wave equations and the Maxwell
equations. After this, we study the important role of symmetry and prove
Noether’s theorem. In particular, we shall see the origins of some impor-
tant physical quantities such as energy, momentum, charges, and currents.
We next present gauge field theory, in particular, the Yang-Mills theory,
as a consequence of maintaining local internal symmetry. Related notions,
such as symmetry-breaking, the Goldstone particles, and the Higgs mecha-
nism, will be discussed. Finally, we derive the Einstein equations of general
relativity and their simplest gravitational implications. In particular, we
explain the origins of the metric energy-momentum tensor and the cosmo-
logical constant.

In Chapter 2, we start our study of field equations from the ‘most in-
tegrable’ problem: the nonlinear sigina model and its extension by B. J.
Schroers containing a gauge field. We first review the elegant explicit solu-
tion by A. A. Belavin and A. M. Polyakov of the classical sigma model. We
then present the gauged sigma model of Schroers and state what we know
about it. The interesting thing is that, although the solutions are topo-
logical and stratified energetically as the Belavin-Polyakov solutions, their
magnetic fluxes are continuous. We shall see that the governing equation of
the gauged sigma model cannot be integrated explicitly and a rigorous un-
derstanding of it requires nonlinear analysis based on the weighted Sobolev
spaces.

In Chapter 3, we present an existence theory for the self-dual Yang-Mills
instantons in all 4m Euclidean dimensions. The celebrated Hodge thearem
states that, on a compact oriented manifold, each de Rham cohomology
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class can be represented by a harmonic form. In the Yang-Mills theory,
there is a beautiful parallel statement: each second Chern--Pontryagin class
on St can be represented by a family of self-dual or anti-self-dual instan-
tons. The purpose of this chapter is to obtain a general representation
theorem in all $4™, m=1.2,--, settings. We first review the unit charge
instantons in 4 dimensions by G. 't Hooft (and A. M. Polyakov). As a
preparation for E. Witten’s charge N solutions, we present the Liouville
equation and its explicit solution. We then introduce Witten’s solution in
4 dimensions, which motivates our general approach in all 4m dimensions.
We next review the 4m-dimensional Yang-Mills theory of D. H. Tchrakian
(the 8-dimensional case was also due to B. Grossman, T. W. Kephart, and
J. D. Stasheff) and use a dimensional reduction technique to arrive at a
system of 2-dimensional equations generalizing Witten’s equations. This
system will further be reduced into a quasilinear elliptic equation over the
Poincaré half-plane and solved using the calculus of variations and a lim-
iting argument.

In Chapter 4, we introduce the generalized Abelian Higgs equations, gov-
erning an arbitrary number of complex Higgs fields through electromagnetic
interactions. These equations are discovered by B. J. Schroers in his study
of linear sigma models and contain as special cases the equations recently
found in the electroweak theory with double Higgs fields by G. Bimonte
and G. Lozano and a supersymmetric electroweak theory by J. D. Edelstein
and C. Nunez. Using the Cholesky decomposition theorem, we shall obtain
a complete understanding of these equations defined either on a closed sur-
face or the full plane. When the vacuuin symmetry is partially broken, we
give some nonexistence results.

In Chapter 5, we start our study of the Chern-Simons equations from
the Abelian case. The Chern-Simons theory generally refers to a wide cate-
gory of field-theoretical models in one temporal and two spatial dimensions
that contain a Chern-Simons term in their action densities. These models
are relevant in several important problems in condensed matter physics
such as high-temperature superconductivity and quantum and fractional
Hall effect. In their full generality, the Chern-Simons models are very diffi-
cult to analyze and only numerical simulations are possible. However, since
the seminal work of J. Hong, Y. Kim, and P.-Y. Pac and R. Jackiw and
E. J. Weinberg on the discovery of the self-dual Abelian Chern-Simons
equations, considerable progress has been made on the solutions of various
simplified 1nodels along the line of these self-dual equations, Abelian and
non-Abelian, non-relativistic and relativistic. This chapter presents a com-
plete picture of our rigorous understanding of the Abelian self-dual equa-
tions: topological and nontopological solutions, quantized and continuous
charges and fluxes, existence, nonexistence, and degeneracy (nonunique-
ness) of spatially periodic solutions.

In Chapter 6, we study the non-Abelian Chern-Simons equations. In or-
der to study these equations, we need a minimum grasp of the classification
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theory of the Lie algebras. Thus we first present a self-contained review on
some basic notions such as the Cartan Weyl bases, root vectors, and Cartan
matrices. We next consider the self-dual reduction of G. Dunne, R. Jackiw,
S.-Y. Pi, and C. Trugenberger for the non-Abelian gauged Schrodinger
equations for which the gauge fields obey a Chern-Simons dynamics and
the coupled system is non-relativistic. We show how this system may be
reduced into a Toda system, with a Cartan matrix as its coefficient matrix.
We then present the solution of the Toda system due to A. N. Leznov in
the case that the gauge group is SU(N) and write down the explicit solu-
tion for the original non-relativistic Chern- Simons equations. After this we
begin our study of the non-Abelian relativistic Chern-Simons equations.
We shall prove the existence of topological solutions for a more general
nonlinear elliptic system for which the coefficient matrix is not necessarily
a Cartan matrix. We shall also discuss several illustrative examples.

In Chapter 7, we present a series of existence theorems for electroweak
vortices. It is well known that the electroweak theory does not allow vortex-
like solutions in the usual sense due to the vacuum structure of the theory.
More precisely, vortices in the Abelian Higgs or the Ginzburg-Landau the-
ory occur at the zeros of the Higgs field as topological defects and are thus
viewed as the Higgs particle condensed vortices but there can be no finite-
energy Higgs particle condensed vortex solutions in the electroweak theory.
However, J. Ambjorn and P. Olesen found in their joint work that spatially
periodic electroweak vortices occur as a result of the W-particle condensa-
tion. This problem has many new features, both physical and mathematical.
We shall first present our solution to a simplified system describing the in-
teraction of the W-particles with the weak gauge field. We then introduce
the work of Ambjorn-QOlesen on the W-condensed vortex equations aris-
ing from the classical Weinberg-Salam electroweak theory and state our
existence theorem. The Campbell-Hausdorff formula will be a crucial tool
in the proof that the spatial periodicity conditions under the original non-
Abelian gauge group and under the Abelian gauge group in the unitary
gauge are equivalent. Qur mathematical analysis of the problem will be
based on a multiply constrained variational principle. Finally we present a
complete existence theory for the multivortex equations discovered by G.
Bimonte and G. Lozano in their study of the two-Higgs electroweak theory.

In Chapter 8, we present existence theorems for electrically and mag-
netically charged static solutions, known as dyons, in the Georgi-Glashow
theory and in the Weinberg-Salam theory. We first review the fundamental
idea of P. A. M. Dirac on electromagnetic duality and the existence of a
magnetic monopole in the Maxwell theory. We will not elaborate on the
original derivation of the charge quantization condition of Dirac based on
considering the quantum-mechanical motion of an electric charge in the
field of a magnetic monopole but will use directly the fiber bundle devise
due to T. T. Wu and C. N. Yang to arrive at the same conclusion. We
then present the argument of J. Schwinger for the existence of dyons in the
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Maxwell theory and state Schwinger’s extended charge quantization for-
mula. We next introduce the work of B. Julia and A. Zee on the existence of
dyons in the simplest non-Abelian gauge field theory, the Georgi--Glashow
theory. The physical significance of such solutions is that, unlike the Dirac
monopoles and Schwinger dyons, the Julia-Zee dyons carry finite energies.
We will first present the explicit dyon solutions due to E. B. Bogomol'nyi,
M. K. Prasad, and C. M. Sommerfield known as the BPS solutions. Away
from the BPS limit, the equations cannot be solved explicitly. In fact, the
existence of electricity leads us to a complicated system of nonlinear equa-
tions that can only be solved through finding critical points of an indefinite
action functional. Recently, Y. M. Cho and D. Maison suggested that dyons,
of infinite energy like the Dirac monopoles, exist in the Weinberg-Salam
theory. Mathematically, the existence problem of these Weinberg—Salam or
Cho-Maison dyons is the same as that of the Julia-Zee dyons in non-BPS
limit: the solution depends on the optimization of an indefinite action func-
tional and requires new techniques. In this chapter, we show how to solve
these problems involving indefinite functionals. These techniques will have
powerful applications to other problems of similar structure.

In Chapter 9, we concentrate on the radially symmetric solutions of a
nonlinear scalar equation with a single Dirac source term. We shall use
a dynamical system approach to study the reduced ordinary differential
equation. The results obtained for this equation may be used to achieve
a profound understanding of many field equation problems of the same
nonlinearity. For example, for the Abelian Chern-Simons equation, we will
use the results to prove that the radially symmetric topological solution
is unique and the charges of nontopological solutions fill up an explicitly
determined open interval, of any given vortex number; for the cosmic string
problem, we will derive a necessary and sufficient condition for the existence
of symmetric finite-encrgy N-string solutions over R? and S2.

In Chapter 10, we study cosmic strings as static solutions of the cou-
pled Einstein and Yang-Mills field equations. It is well accepted that the
universe has undergone a series of phase transitions characterized by a
sequence of spontaneous symmetry-breakings which can be described by
quantum field theory models of various gauge groups. Cosmic strings ap-
pear as mixed states due to a broken symmetry which give rise to a multi-
centered display of energy and curvature and may serve as seeds for matter
accretion for galaxy formation in the early universe, as described in the
work of T. W. B. Kibble and A. Vilenkin. Since the problem involves the
Einstein equations, a rigorous mathematical construction of such solutions
in general is extremely hard, or in fact, impossible. In their independent
studies, B. Linet, and A. Comtet and G. W. Gibbons found that the cou-
pled Einstein and Abelian Higgs equations allow a self-dual reduction as in
the case of the Abelian Higgs theory without gravity and they pointed out
that one might obtain multi-centered string solutions along the line of the
work of Jaffe- Taubes. In the main body of this chapter, we present a fairly
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complete understanding of these multi-centered cosmic string solutions. In
particular, we show that there are striking new surprises due to the presence
of gravity. For example, we prove that the inverse of Newton’s gravitational
constant places an explicit upper limit for the total string number. In the
later part of this chapter, we combine the ideas of Linet, Comtet-Gibbons,
and Ambjorn ‘Olesen to investigate the existence of multi-centered, elec-
troweak, cosmic strings in the coupled Einstein and Weinberg-Salam equa-
tions. We shall see that consistency requires a uniquely determined positive
cosmological constant. We will begin this chapter with a brief discussion of
some basic notions such as string-induced energy and curvature concentra-
tion, deficit angle, and conical geometry.

In Chapter 11, we consider a field theory that allows the coexistence
of static vortices and anti-vortices, or strings and anti-strings, of opposite
magnetic behavior, both local and global. This theory originates from the
gauged sigma model of B. J. Schroers with a broken symmetry and has
numerous interesting properties. The magnetic fluxes generated from op-
posite vortices or strings annihilate each other but the energies simply add
up as do so for particles. Gravitationally, strings and anti-strings make
identical contributions to the total curvature and are equally responsible
for the geodesic completeness of the induced metric. Hence, vortices and
anti-vortices, or strings and anti-strings, are indistinguishable and there is
a perfect symmetry between them. However, the presence of a weak exter-
nal field can break such a symmetry which triggers the dominance of one of
the two types of vortices or strings. Mathematically, this theory introduces
a new topological invariant in field theory, the Thom class. A by-product is
that these vortices and anti-vortices may be used to construct maps with
all possible half-integer ‘degrees’ defined as topological integrals. As in the
Abelian Higgs theory case, the existence of such strings and anti-strings
implies a vanishing cosmological constant.

In Chapter 12, we study the solutions of the geometric (nonlinear) theory
of electromagnetism of M. Born and L. Infeld which was introduced to
accommodate a finite-cnergy point electric charge modelling the electron
and has become one of the major focuses of recent research activities of
field theoreticians due to its relevance in superstrings and supermembranes.
Mathematically, the Born-Infeld theory is closely related to the minimal
surface type problems and presents new opportunities and structure for
analysts. We begin this chapter with a short introduction to the Born-Infeld
theory and show how the theory allows the existence of finite-energy point
charges, electrical or magnetical. We then discuss the electrostatic and
magnetostatic problems and relate them to the minimal surface equations
and the Bernstein theorems. We shall also obtain a generalized Bernstein
problem expressed in terms of differential forms. We next study the Born-
Infeld wave equations and show that there is no more Derrick’s theorem
type constraint on the spatial dimensions for the static problem. Finally
we obtain multiple strings or vortices for the Born-Infeld theory coupled
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with a Higgs field, originally proposed in the work of K. Shiraishi and S.
Hirenzaki. In particular, we show that the Born-Infeld parameter plays an
important role for the behavior of solutions, both locally and globally.

Bibliographical notes on the development in other topic areas will also
be made at appropriate places in the book.

In developing the subjects presented in this work, I have benefited from
helpful communications, conversations, and in several cases collaborations
with many mathematicians and physicists: S. Adler, J. Ambjorn, H. Brezis,
L. A. Caffarelli, X. Chen, Y. M. Cho, G. Dunne, Weinan E, A. Friedman,
Y. Z. Guo, S. Hastings, D. Hoffman, R. Jackiw, H. T. Ku, G. P. Li, F.
H. Lin, J. B. Mcleod, E. Miller, P. Olesen, B. J. Schroers, L. M. Sibner,
R. J. Sibner, T. Spencer, J. Spruck, G. Tarantello, D. H. Tchrakian, E. J.
Weinberg, E. Witten, D. Yang. In particular, I wish to thank J. Spruck for
initiating my interest in this area and for some fruitful joint work. Finally,
I am grateful to my parents, Zhaoqi Yang and Hua Han, and my brothers,
Wei Yang and Jin Yang, for their unwavering encouragement and support
over the vears.

[ hope that this book will be useful to both mathematicians and theo-
retical physicists, especially those interested in nonlinear analysis and its
applications.

Brooklyn, New York Yisong Yang
July, 2000



Notation and Convention

The signature of an (n + 1)-dimensional Minkowski spacetime is always
(+—-- —). The (n + 1)-dimensional flat Minkowski spacetime is denoted
by R™! and is equipped with the inner product

Ty ::L,OyO —.’L‘l’yl — . _znyn’

where 2 = («°,z%,---,z"),y = (¥°, 9}, --,y") € R™! are spacetime vec-

tors.
Unless otherwise stated, we always use the Greek letters a, 3, u, v to
denote the spacetime indices,

aaﬁau”j :01112,"'7”7
and the Latin letters i, j, k to denote the space indices,
i, k=12 ,n

The standard summation convention over repeated indices will he ob-
served. For example,

n " n n

i i 2 2 ij2 12

ab; = E ab;, a;bt = E a;bt, a; = E as, |b°= E [6*].
=1 i=1 =1 i=1

Similarly,
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XXiv Notation and Convention

The roman letter ¢ is reserved to denote the base of the natural loga-
rithmic system and the italic letter e is reserved to denote an irrelevant
physical coupling constant such as the charge of a positron (—e will then
be the charge of an electron), except within some special statement en-
vironment such as a theorem where italic type is used throughout, which
should not cause confusion. Likewise, the roman letter i denotes the imagi-
nary unit v/—1 and the italic letter i is an integer-valued index. We use the
roman type abbreviation supp to denote the support of a function. How-
ever, within some special statement environment such as a theorem, this
abbreviation will also be printed in italic type.

The letter C will be used to denote a positive constant which may assume
different values at different places.

For a complex number ¢, we use ¢ to denote its conjugate. For a complex
matrix A, we use A! to denote its Hermitian conjugate, which consists of
a matrix transposition and a complex conjugation.

When a system consists of several equations or relations, we often number
the system by labelling its last equation or relation.

Although n denotes an integer, the symbol d/0n stands for the outward
normal differentiation on the boundary of a domain.

The symbol W*? denotes the Sobolev space of functions whose distrib-
utional derivatives up to the kth order are all in the space LP.

By convention, various matrix Lie algebras are denoted by lowercase
letters. For example, the Lie algebras of the Lie groups SO(N) and SU(N)
are denoted by so(N) and su(N), respectively.

The notation for various derivatives is as follows,

J

J| B = 1, .
= -,dm—u, O =01 Lidy, 9= 5(31 - 102), 0= §(d1 + ldg).

M
Besides, with the complex variable 2 = ! +iz2, we always understand that
0, = 0/0z = 8,0; = 0/9% = 0. Thus, for any function f that only has
partial derivatives with respect to ! and z?, the quantities 9, f = 0f/0z
and dz = 0f /0% are well defined.

Vectors and tensors are often simply denoted by their general compo-
nents, respectively, following physics literature. For example, it is under-
tood that

Au = (Au) = (AO,A17A27 A3), Quv = (g;w)-

In a volume of this scope, it is inevitable to have a letter carry differ-
ent but standard meanings in different contexts, although such a multiple
usage of letters has kept to a minimum. Here are some examples: 7 may
stand for the radial variable or the rank of a Lie group; é may stand for a
small positive number or variation of a functional, é, stands for the Dirac
distribution concentrated at the point p, and §;; is the Kronecker symbol;
g may stand for a coupling constant, a metric tensor or its determinant, or
a function.
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