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Preface

This text contains descriptions of about two hundred experiments suitable for an
undergraduate course in Physics. Every experiment has been undertaken in the
Physics laboratories at The Polytechnic of Central London, often with the valuable
help of students and with the advice and assistance of members of the Physics staff.

For students in the United Kingdom, the standard of these experiments ranges
from the second year of the Advanced Level G.C.E. course through to the first
two years of study towards an Honours Degree in Physics, or all three years in a
Science or Engineering Degree course in which the subject of Physics forms a
significant part. It is regarded as of major importance that such courses should
essentially involve the student in spending a considerable amount of time conducting
individual experiments in the laboratory. Furthermore, it is considered that such
experiments should cover a number of the fundamental aspects of Physics in
illustration and extension of the accompanying lectures, should give the student
first-hand experience of a variety of methods and instruments, should lead to
an appreciation of the importance of errors and their treatment and, in the earlier
parts of the laboratory course, should make use of simple apparatus to ensure a
true understanding of principles not confused by assumptions about the operation
and performance of complex measuring equipment.

The experiments included cover the main sub-divisions: optics, mechanics of
solids and fluids, sonics, thermal phenomena, electrical measurements, magnetism,
physics of the atom, radioactivity and nuclear physics, electronic devices and
principles (but not modern electronic circuitry). Throughout there is considerable
empbhasis on simple statistical methods of treating errors. There is also more
emphasis on technology than has been usual in such texts in the past: for example,
a very considerable amaunt of scientific research is carried out at sub-atmospheric
pressures, so experiments on the techniques involved are included.

Since the ‘project’ type of experiment — in which the student is exposed to a
practical problem ta be solved for which the results are unknown or not so
spemflc as in the standard text-book — is régarded as 1mportant several suggestions



about such ‘projects’ are made in this text. In general, however, it is maintained that
such ‘projects’ should mainly be left to the latter stages of the course on the basis
that a good deal of formal expefimentation is desirable to gain a proper appreciation
of fundamental ide'as, instruments and methods.

In addition to its use by the undergraduate student, it is expected that this book
should prove to be a useful acquisition in the science library in the more junior
college or school as a source of information to teachers and pupils who wish to

develop methods and ideas in their classes outside the usual syllabuses.

London ‘ RM.W.
June, 1973 JY.
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Errors of Observation

1.1 Discussion of the results of an experiment

As an example, consider the results of experiments to determine by the use of a
" Michelson interferometer the wavelength of almost monochromatic light (Section
2.5).

The determination of the wavelength of the orange-yellow line from a sodium
discharge lamp (nominally 5893 A) was repeated ten times by each of three students.
The results are given in Table 1.1.

TABLE 1.1.

Determination of the wavelength \ of the orange-yellow light from a sodium discharge lamp.

Student Discrepancy.  Student Discrepancy  Student = Discrepancy,

) from mean @) from mean ) from mean

N value A) value A) value
6002 +100 6200 +233 5897 -3
5933 +31 6124 +157 5852 —48
5826 —~76 5700 —267 5983 +83
5846 —56 6008 - +41 5977 +77
5862 —40 6072 +105 5920 +20
5906 +4 5858 —109 5903 +3
5916 - +14 6038 +71 5906 +6

. 5873 —29 5886 —81 5870 —30

5932 +30 5964 -3 5836 —64
5923 +21 5822 —145 5851 —49
Mean
5902 5967 . 5900

* 1 A (Angstrom unit) = 10"%m = 10" nm

]
EENKQ1?



2 EXPERIMENTAL PHYSICS FOR STUDENTS

All three students hoped that their observations would give a mean value of
5893 A for the wavelength of the light. The overall mean of the determinations
recorded in Table L.1. is $923 A, which is an error of + 0:51%. This is very good for
most undergraduate experiments. But some interesting facts and queries have been
revealed :

(i) The overall mean of 5923 A is 30 A greater than the true value. Is this error real
and can it be said that the instrument is faulty?

(ii) Are the determinations made by the various students significantly d1fferent‘7
Alternatively, as each student used a different part of the coarse scale, is the micro-
meter screw cut uniformly? In a sufficiently lengthy experiment, the performance
of the students and the uniformity of the screw could be investigated.

(iii) One of the determinations by student (2) is 5700 A, which is erroneous by
—4-7% of the correct value. Is this a serious mistake due to faulty observation?
Should this observation be disregarded? What is the essential minimum number of
observations needed? The rights and wrongs of rejection of any (or all) of the obser-
vations need discussion. :

To stress the considerations under (iif), another student obtained one value of
6475 A in a series of ten observations, and consequently must decide whether it
should be kept or rejected. [t may demonstrate the unreliability of the apparatus or
bias the mean value unjustifiably. The value of 6475 A seems a gross mistake. Is
rejection justified? If one observation is rejected, why not some of the others? Are
all the observations wrong? The process could be continued until only one observa-
tion remains, but some standard for rejection is essential because different observers
might have different ideas on which one is correct. Statistics and not personal preju-
dice will provide the necessary criterion for rejection and will give the probability Qf
obtaining a wild observation.

In this Michelson interferometer experiment, we are fortunate in “knowing the
correct result. In most experimental work outside student laboratories, the correct
result is not known. If it were, the experimental work would be unnecessary. A
criterion for rejection of results consequently becomes a major requirement.

As a general rule in an ‘open-ended’ experiment, the experimentalist should follow
the advice of an eminent biologist ‘to treasure the exceptions’, recognize their
existence, and have a criterion for rejection. Further discussion of this topic is given
in Sections 1.4 and 1.14.

1.2 Definitions of simple terms

(i) The mean. A number of results from an experiment are usually averaged to give
the mean value. For example, X is the mean of a number 1 of determinations where
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* the values recorded are x,, X5, X3 ... X, and

x1+XQ+X3+...xn

X =
, n
It is important to record also the variability of these observations. Thus the 'expen'~
menter should be able to state that the value is the mean value (e.g. x ) plus or minus -
a parameter which denotes the var1ab1hty of the observations due to random errors.
This variability is best expressed as the standard deviation of the mean, s,, which
is defined in Section 1.3. The final result of the expenment would therefore be
expressed as
X t5,

where ¥ is the mean value.

(if) The error. The term error has two main meanings. It may be the difference
between an experimental result and the true value, where this is known. For example,
the precision work that has been done on the measurement of the speed of light
gives a value of 2:99793 X 108 ms™. In a comparatively simple student’s experiment
the mean result is 3:05 X 108m ™. The error is simply stated to be '
(3:05—299793) X 108 = 5-207 X 106ms™.

In many cases of experimental work, the true result is not known The error, or
standard error is then best expressed as * s, , where s,,, is the standard deviation of
the mean of n observations (see Section 1.3).

Random errors are minor experimental or accidental errors due to errors of judge-
ment, or mildly fluctuating conditions which cannot be controlled. There are many
causes of such fluctuations.

Systématic errors are constant errors which cause all results to be incorrect by
roughly the same amount in the same direction. Care must be taken in the
interpretation of systematic error.

(iif) Probability. A measured value may be less than, or greater than a certain ﬁgure.

In general, the deviations of individual observations from the mean value X may
be plotted to give a Gaussian distribution curve (Section 1.12), also known as a
normal distribution.

"This Gaussian distribution will be obtained if the number n of observations is
large. In many experiments time forbids that # is a large number. The plotted curve
may then well depart from the Gaussian distribution. Provided the number of
observations is adequate, however, the Gaussian distribution may be assumed and
used as a standard of judgement. A feature of this distribution is that 68% of all
observations lie between x and x * s and 95% of all observations lie between X and
X * 25 where s is the standard deviation.
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(iv) Populations and samples. A population is involved when the number of observa-
tions is very large, ideally infinity. In practice, samples are encountered in which the
number of observations is finite. An important use of statistics is to test the signifi-
cance of a sample value in comparison with the certainty of a population value.

1.3 The calculation of error

In the Michelson interferometer experiment (Sections 1.1 and 2.5) the mean error
of 30 A might be allowed for as being a systematic error, but this is not known, as
yet. If this were done, the observations would still show some variability, which
might be called the random error. Both types of error are of interest.

To assess the random error, there are two possibilities; -~

(@) The range w could be taken as the difference between the largest and the smallest
value recorded. This is simple but useless because it uses only two observations, both
of which might be.gross mistakes.

(b) The preferred alternative is to utilize the variance s? of a sample, which is the
sum of the squares of the differences between the observations and their mean
divided by (n — 1), where n is the number of observations, i.e.

Z e v )2
2o 2ETX) (1.1)
n—1
s is known as the séamdard deviation; x is the sample mean.
The variance of the population is given by
T(x —u)? '
2 . =2 P
o N (1.2)

where p is the population mean, and n = N is now a very large number; but in experi-
mentation we are concerned exclusively with samples rather than populations
because the number of observatxons 4is limited, so Equatlon (1.1) is the important

expression.
The standard devnatlon has been called the standard error of an individual obser-

vation. The standard deviation of a mean of n observations may be shown to be s,, ,

where
Sm = S\/n : (1.3)

Experimental results should be reported in such a way that the accuracy of the
mean is known. If s and n are given, s,,, can be calculated, and using a knowledge of
the Gaussian or normal distribution, the probability of obtaining a certain error is
known. The calculation of s may be simplified by using in place of Equation (1.1)
the relationship '
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= [Z(x)*—Ex2)nl/(n—1) (1.4)

The normal or Gaussian distribution concerns a population (i.e. a very large num-’
ber) for which the mean and the variance are known, but all experimental data is
based on small samples (i.e. n is small) and as the true variance is unknown, a slightly
‘different error distribution has to be used: this is the ¢ distribution (Section 1.13). ¢
has its own probability distribution, any specified value of ¢ being exceeded by a
calculable probability, and tables are available to give ¢ values for various conven-
tional probability levels. This provides a method of testing whether a mean found
from experimentally determined values differs 51gn1ﬁcantly from .any proposed value.
In this case, the statistic ¢ is defined from

= (measured value — true valLie)/s,,, (1.5)
and this must exceed certain values listed in the statistic ¢ table (A ppendix A) to

establish a significant difference. To illustrate the process, we will revert to the .
experiment.

1.4 A re-assessment of the results of the interferometer experiment (Section 1.1)
To illustrate the ideas of Section 1.3, consider again the results recorded in Table 1.1.

-Student (1): mean value of A determined by the experiment wnth the Mlchelson
interferometer is 5902 A.

The value of 52 is calculated from either Equation (1.1) or (1.4). Using the former,
the values of (x — x) in this equation are those recorded in the second co]umn of
Table 1.1/ Thus

1002+ 3124+ 762+ 562+ 402+ 42+ 142+ 292 + 302+ 212

-

$° = (10— 1)
= 23—896-2 = 2652
Therefore
s = 52A
Also, from Equation (1.3) .
e 59 -
= —= = 174
m T /10

By such calculations, the results of the three students are expressed as:

Student (1): mean X\ = 5902A4;s2 = 2652;5 = 52&;s, = 174
Student (2); mean A = 5967 A;s? = 23040;s = 1524:s, = 48A
Student (3): mean A = 5900A:s* = 2552;5 = 51A;sp = 174

The overall mean of all 30 observations recorded by _the»three students is 5923 A

i
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withs, = 184, s0A=(5923 + 18) A.
Certain conclusions can be made;

(i) The statistic t is given by Equation (1.5) to be

_ 59235893 _ 30 _
- 18 ~ 18 167

In Appendix A it is shown that / must exceed 2-045 for a difference to be significant

when based on 30 gbservations (Section 1.13). The overall mean of 5923 A is there-
fore not significantly different from the true value, known to be 5893 A.

Again, for ten observations f must exceed 2-26; similar calculation shows that no
student determined any significant difference between his mean and 5893 A.

(ii) It follows that inspection reveals no significant difference between mean values
obtained by the three students. However, a further application of the ¢ test ‘enables
two means to be compared.
Thus _ —
N
[(n,sf + n,53) (n, + n,)l
A/ (ny +ny—2)(nyny)

t =

where n, and n, are the numbers of observations in each group, i.e. ten in this case,
whilst s? and s2 are already given, i.e. 2652 and 23 040 for the first two cases.

(iii) Concerning the observations produced by each student, the distribution may be
checked roughly for normality despite the small sample size.

Student (1): s = 52'A. According to Section 1.2 (iii) we would expect 68% or seven
of his observations to be in the range 5902 + 52 A. Actually eight are in this range
and the other two are in the range 5902 * 104 A. No observation differs from the
mean by more than 2s.

Student (2) : s = 152 A; 68% or seven of his observations are expected in the range
(5967 + 152) A. Actually seven are in this range and the other three are in the range
(5967 + 304) A. No observation differs from the mean by more than 2.

Likewise in the case of student (3), no deviations exceed 2s.

In all this work therefore none of the observations is unreliable. However the
controversial value of 6475 A (Section 1.1) obtained in another group of observations
with an s of 144 is more than 3 s from the mean value. This value has a probability
of ‘about 2 in 1000 of occurring, and we might fix our standard of rejection of an
observation as being in excess of 3 s. The value of 6475 A is consequently.rejected
as a wild or gross mistake, and the mean and standard deviation is recalculated from
. the remaining nine observations. Of course border-line cases occur and one might

'c'ho'o'se a lower value than 3 s this does‘not matter provided we state our standard.



