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PREFACE

Historically, activity in a science reflects commercial interests and
needs. Liquid metals are, in general, an intermediate stage in the commer-
cial utilization of most metals. In the liquid state they are rarely articles of
commerce. Therein lies one reason why to so large an extent the research
activity in liquid metals for many years lagged behind that of solid-state
studies. Familiarity with its form, going back to the primitive metal age,
had, perhaps, to some extent dulled Man's curiosity overit. Andperhapsalso
there may have been a sense of disappointment experienced by his lack of
ability to find a relationship between the properties of commercial alloys in
their solid state and in their liquid phase. Thus, the difficulties of liquid
state theory itself and the uncertainties in the relationship between' the rela-
tively well understood electron theory of metals and the corresponding nature
of liquid metals have deterred many from entering an uncharted field. And to
all this, one does not need to dwell on the experimental difficulties often en-
countered because of the increased reactivity of these materials at their
working temperatures.

Within the last two decades the situation has changed, and the liquid
state of metals has emerged as an important field of scientific endeavor. The
field is no longer underdeveloped or underpopulated, but the papers and other
reported work in this field are scattered among a great variety of publications
and in many languages. But now as the field approaches maturity, a time
arrives for a comprehensive review of its status. In this way, those who
approach this field with no background can have an overview of what has been
accomplished and what remains undone. The expert in the field would have the
benefit of relating his work to the body of existing knowledge. Such reviews
have often in the past precipitated a new thrust into still unconquered territory.
Herein rest my hopes for this book.

For the reasons given, these articles are presented here largely in the

form of summaries of the work done on liquid metals. However, they are not
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purely review papers. They were written with the intent of combining reviews
with original contributions and critical comment on various selected aspects
of a very large field.

Quite obviously not every aspect could be covered, nor every point of
view., The reader bemoaning the absence of his favorite subject may take
solace in that some of mine are missing also. Here as in other matters, one
cannot escape the difficult decisions caused by time and space limitations.

For the convenience of the reader, a separate Systems Index has been
included along with the Author and >Subject Indexes. This Index has been orga-
nized in order of complexity, from Unary to Quaternary, with each section in
alphabetical order. It is hoped that this arrangement will be of use in seeking
out specific information.

This is the last opportunity I have to thank the authors for their

cooperative spirit.

Sylvan Beer

Syracuse, New York
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Chapter 1

ON THE THERMODYNAMIC FORMALISM OF METALLIC'SOLUTIONS

C. H. P. Lupis

Associate Professor
Department of Metallurgy and Materials Science
Carnegie-Mellon University, Pittsburgh, Pa.
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1II. The Activity and Activity Coefficient Functions 2
1. Presentation and Discussion of Raoult’s and Henry's Laws 3
IV. Basis of a Polynomial Formalism for Dilute Solutions 9
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VIl. Examples of Application . . . . . .27
VHI. Concentrated Solutions and Stability Functions . . .31
IX. Conclusions . . i . i . . . 34
References . . . ) . . . . 35

I. INTRODUCTION

Progress in a given field develops formalisms best adapted to the
practical and theoretical characteristics of this field. However, this n{ay
also hinder the flow of information between investigators of different but
related fields. In particular, physicists and chemists may not be very fami-
liar with the formalism most commonly used by metallurgists in their study
of the thermodynamic properties of metallic solutions. The goal of the
present contribution is to outline this formalism and explain some of its
characteristics.

Most fundamental equations in thermodynamies introduce the chemical
potential uia) of a component i in a phase ¢. Practically, it is imperative
that the relation of p.ga) to the composition of the phase o be known. The

1
Copyright © 1972 by Marcel Dekker, Inc. NO PART of this work may be reproduced or utilized in
any form or by any means, ¢lectronic or mechanical, including Xeroxing, photocopying, microfiim,
and recording, or by any information storage and retrieval system, without permission in writing
from the publisher.



2 C.H.P. LUPIS

formalism mentioned above is deaigned to facilitate the study of this composi-
tion dependence for metallic solutions. It is valid for both solid and liquid
alloys, although it is in liquid alloys that it has found its most extensive
applications.

. THE ACTIVITY AND ACTIVITY COEFFICIENT FUNCTIONS

When the concentration of i (e.g., _its moie frac;ion Xi) becomes very
small, p i becomes very negative. Mathematically, it is very inconvenient to
handle a function which tends toward -« and we introduce a new function which
is better behaved, the activity a. It is defined by the equation

M =HO(P, T) + RT {na, @
u‘g is a reference value for the calculation of ai. 1t depends only on the tem-
perature and the pressure of the phase under consideration and is the value of
My in a standard state which is entirely arbitrary. For convenience, we shall
adopt here the convention that p“’ is the value of My when the element i is
pure and when it has the same structure as that of the solution under study
(e. g., a liquid). The activity function 8, is then a positive function which is
equal to 0 when Xi=0 and to 1 when Xi= 1.

For solutions of components which are not too dissimilar in character,
it is experimentally observed that a is approximately equal to the mole frac-
tion Xi. These observations have led to the copcept of an ideal solution; it is
thermodynamically defined by the equation

a =X, . @

At first, it may seem strange to define the behavior of 2 solution by the beha-
vior of only one of its components. However, although other definitions of an
ideal solution are possible, this one is perfectly satisfactory, as it is an easy
matter to demonstrate (through the use of the Gibbs~-Duhem equation) that if
Eg. (2) is valid for one solute, then the activity of any other solute ig also
equal to its mole fraction.

Real solutions do not behave ideally. To account for these deviations,
large or small, a correction factor is entered in the relation (2) by means of
the activity coefficient 7y It is defined by the equality
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a.

i
= 3
% xi @

For an ideal splutiod, i is identical to 1.

Thus, the problem of the composition dependence of My has now been
transferred to the problem of the composition dependence of Yy A mathemat-
ical formalism often implies certain assumptions and it must rely on some
experimental observations. The formalism that is developed bélow is based

on the experimental behavior of 2] in dilute solutions.

II. PRESENTATION AND DISCUSSION OF RAOULT'S
AND HENRY'S LAWS

Raoult's and Henry's laws concern, respectively, thé behavior of the
solvent and the solute in dilute solutions. The observations which led to
Raoult's law showed that the activity of the solvent is approximately equal to
its mole fraction; those which led to Henry's law also showed that the activity
of the solute is approximately proportional to its mole fraction. Henry pub-
lished his results in 1808 [1]* and Raoult in 1887 [2]. At these dates, the
concept of an activity fumetion was of course unknown, but today these laws
must be given a rigorous definition in terms of functions of current usage if
they are to be considered as laws rather than approximations. Too often, in
the literature, even modern versions of the historical formulations are im-
precise and may lead to some confusion as to their significance. Because
they are relevant to the foundation of any formalism describing mixing pro-
perties, they will be presented and discussed here in some detail.

In the case of a binary solution, it is often stated [ 3-5] that the
solvent 1 follows Raoult's law in a given range of concentration including the
pure element 1, if, in this range, the activity curve of 1 is the line of ideal

mixing:
a, =X,

*Henry's law may be found in the following statement: "The absorption of gas ... is exactly
proportional to the density of the gas, considered abstractly from any other gas with which it may
accidentally be mixed.” [1], p.2H.
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This statement, however, only yields a different name to the phenomenon of
ideal mixing. The interesting feature in the concept of Raoult's law is that the
solvent approaches the ideal behavlor when its concentration approaches unity,
L.e., the slope of its activity curve at the point X, =1 is the line of ideal

mixing;
' ( 9’_ ) =1 ‘ ) @
dxi xl - 1 - "
or, in terms of the actlﬂty coefficient y, [see Eq. (3)1:
[_d.(._z'.‘;y_!_). ] =0 v (5)
dxz Xl-.l .

Quite similarly, a common definition of Henry's law [4, 5] states that
the activity of the solute 2 becomes proportional to its concentration when it is
very dilute. Clearly, this proportionality exists only as an approximation,
i.e., it is only within the experimental scatter that the activity curve msy bé
replaced by its tangent at the point of infinite dilution. The argument that both
Raoult's and Henry's laws are properly statements about limiting slopes may
seem evident; indeed, it is often implicit in the presentation of these laws.
That it should be made explicit will become more apparent in the following
discussion.

A more precise statement of Henry's law is that at the point of infinite
dflution of 2 where a; is zero, the slope of a, versus X,

9:.3. = ' 9—2&) ()
(dxa)x,m (Ya*xadx’ .o ®

hag a nonzero finite value. By definition of the activity coefficient and by
I'Hospital's rule,

s E()‘a)xa_,o = (;’;)x{.; (g%)x,-»o )

Consequently, y? is finite and different from zero. A comparison of Egs. (6)
and (7) ylelds
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dw
[x,L“_Z'_) =0 ®)

dX, ] X,-0
Whereas Eq. (8) is & necessary consequence of Henry's law — in the form pro-
posed here — it is not a sufficient condition for it [6]. As a consequence, it is
easily seen through the Gibbs-Duhem equation

d({n 'yl) a(tn )

that Raoult's law is a necessary consequence of Henry's law, but not a suffi-

=0

cient condition for it. .
This definition of Henry's law implies that it is generally applicable to
the ionic species of an electrolytic splution, and consequently, to the mean
activity a, and activity coefficient Yy of an electrolyte [7]. The peculiarity
of this case is that, as iny, varies as X2 in dilute solutions, which is a

result of the Debye-Hlckel treatment, d[({n -yt)/dX,]x -0 is infinite, while
2

in -;i is finite and [X; d{tn yt)/dx°]X,-'0= 0; from Eq. (6) (da*/dxa)xa_.o

is then seen to be finite. It may easily be cﬁécked that the eleéérolyte itself
does not follow Henry's law because y, - 0 when X,‘ - 0.

For nonelectrolytic 8olutions (and metallic solutions in particular),
the applicability of Henry's law is commonly conaidered to mean that in a
small concentration range (0, Xj;) the compositlon dependence of y, may be
neglected, thus that [d(tn ya)/dxg]xa_. 0 is not infinite. As already shown,

this condition is more restrict{ve than the definition of Henry's law previously
adopted, but its range of applicability is wide enough to warrant the title of a
"law''. Thus, it appears desirable to distinguish between Henry's law as pre-
viously defined — or Henry's zeroth-order law — which states the existence of

4n 2, and Henry's firgt-erder law, which states the existence of both Ln y°
and [din y,)/dx,]xa_.0 (see Fig. 1).

Perhaps the beést justification for such a distinction is that obedience
to the zeroth-order law may be interpreted in terms of the selection of the
8pecies describing the system, and obedience to, the first-order law in
terms of the short-range effectiveness of the forces in the solution.

As a simple illustration, let us consider the case of nitrogen solubility
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0 r
- 70 ) Aqueous Sotutions
o4 ot 25°C.
N
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-0. .
A L i A
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FIG. 1. Heary's zeoth-order law is obeyed in both cases (s) and (b), whereas Henry's

first-order law is not obeyed in (s) but obeyed in (b). In(a), thé zeroth-order law is
obeyed by the fobs, not the electrolyte.

in liquid iron. Numerous fnvestigations have shown that the concentration of
nitrogen in iren is practically proportional to the squsre root of the partial
pressure of nitrogen (at least under the usudl range of pressires). The binary
system may be deacribed by the couple of species Fe and N, or Fe and N. If
we sgelect the specieas Fe and N, we can write the absorption reaction

N, (& = Ny (in tron)

and the equilibrium constant
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k=N NN

pNﬂ pNﬂ )
At high dilutions, all mensures of concentrations are practically proportional
1
to each other (e. g., & and it is equivalent to write that the square
(o8, Xy % 35X s eq

root opr. is proportional to xNa or to )Sq; thus,

/e _ - h?
pN: h}%s or pNS h X‘Nh

Consequently,

yNﬂ N l(ha xNa

For XN‘—' 0, we see that y%a =0 or 4n ,}I’qa = ~=; Henry's zeroth-order law
{s not obeyed. If, on the contrary, we were to select the species Fe and N,

we would find by a similar procedure that ygl is finite and different from zero,
i.e., that Henry's zeroth-order law is obeyed.

A converse example may also be given. If we consider the solubility of
nitrogen in water, it is found experimentally thht the concentration of nitrogen
{s approximately proportional to the partial pressure of nitrogen. As a conse-
quence, it is easy to show that a description of the system in terms of H,O

and N; leads to an applicability of Henry's zeroth-order law (4n y& finite)
2

but that a description in terms of H;O and N results in its violation
(7;1 = o), The importance of these considerations is that they indicate that
nitrogen is dissociated in liquid iron and is present as atoms, whereas in
water it is not dissociated and is present as diatomic molecules. Thus,
Henry's zeroth-order law is relevant to a study of the structure of a solution.
Henry's first-order law may give us some information on the inter-
actions in solution. Through various statistical models (similar to those of the
free volume [9] or the central atoms [10)), it is possible to see that the
derivatives of 4n " with respect to composition involve integrals which con-
verge when the net interaction potential between atoms or molecules decreases
rapidly with the distence and which diverge when it decreases slowly with the
distance (e.g., a8 1/r between electrical chargea}. Thus, it is not surprising
to find that Henry's first-order law is obeyed by metallic solutions and not by
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electrolytic solutions. It should be émphasized that this fact does not prove
that the forces between solute atoms in metallic solutions are necessarily
short-range; it merely establishes that in most cases the thermodynamic
properties of the solution can be adequately described through short-range
forces.

For a solution of m components, we choose as independent variables

the mole fractions of the solutes X, X,, ..., Xm. The generalization of
Raoult's law is straightforward and may be expressed by the following equa-
tions: )
[ 3 (dn
—-‘—il—)] =-1 for j=23,...,m . (93)
L 3% Ix,-1
or

[ 3{n y,)

N =0 for j=2,3,...,m (9b)
| 3% ]xwl

Each of the partial derivatives in Eqs. (9a) and (9b) is a binary property (of
the binary system 1-j); thus, the generalization of Raoult's law to a multi-
component system introduces no new information.

Whereas Raoult's law is necessarily defined at the point X, =1, the
concept of Henry's law should apply to the behavior of a very dilute element in
a solution of any arbitrary composition with respect to the other elements. In
other words, for the element i (i # 1), Henry's law is defined at any point o’

where Xi and a. are zero (see Fig. 2). The law may be expressed by the

i
following equations:

oa
< a-fi' ) = finite value different from zero (10a)
i/ at o
and
aal
(ﬁ\) =0 for j=28,....m and j#£i (10b)
j/at a’

In contrast to the case of Raoult's law, the validity of Henry's law in the"
various binaries i-1, i-j, does not ensure its validity in the multicomponent
system 1-i...j. A geometric interpretation of both Raoult's law and Henry's
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FiG. 2. Tustration of Raoult's and Henry's laws for a ternary system. Raoult's law is
defined at the poliit (¢ by the tangent plane ¥y, which is identical to the plane
of ideal mixing (BC. Henry's law is defined at any point ¢/ on BC by the tangent
plane @B'y/ which contains BC and is neither horizontal nor vertical.

law for a ternary system is given in Fig. 2.
A necessary consequence of Egs. (10a and (10b) is

B(Lnrl)}
X, —— =0 for j=2,8,...,i,.0.,m 1y
[ i dX at o' ’

i

The special case of Henry's first-order law adds the restriction that eaeh
derivative {a(m 71)/ ¥3X ] t o ls finite. ) o

IV. BASIS OF A POLYNOMIAL FORMA LISM
FOR DILUTE SOLUTIONS

Our present understanding of metallic solutions does not allow us to
derive theoretically analytic forms of much accuracy for the éomposition
dependence of thermodynamic properties. However, the need for analytic



