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Prefiace

The chapters in this volume fall into two groups. The first group treats the influence of
ordinary translational dislocations on phenomena which tend to interest physicists

“rather than metallurgists; the second group treats the theory and properties of
rotational dislocations — disclinati@ns. ‘

In Chapter 18, C. J. HumphreyNéMrWhods of obtaining images of
the dislocations in a crystal, using beams. of electrons, X-rays or visible light, or by
field-ion emission. The next chapter, by B. Mutaftschiev, shows the very great influence
which dislocations may have on the rate of crystal growth, and the way in which the
mechanisms of ¢rystal growth lead to the multiplication of dislocations. In Chapter 20,
R. Labusch and W. Schroter discuss the .electrical effects of dislocations in
semiconductors of the diamond and sphalerite structures, effects which can be of great
technical importance. The last chapter in this group, by F. R. N. Nabarro and A. T.
Quintanilha, treats the motion of lattice dislocations in a superconducting metal, the
interaction between lattice dislocations and flux lines in a Type II superconductor, and
dislocations in the flux-line lattice.

In the second group, M. Kléman develops in Chapter 22 the general theory of
disclinations, with applications to solid crystals and nematic and cholesteric liquid
crystals. This theoretical study is followed by an account by Y. Bouligand of the defects
and textures which are observed in liquid crystals of the smectic, myelinic, cholesteric
and nematic classes, and their interpretation in terms of disclinations. Finally, M.
Kléman describes the relation between magnetoelasticity and dislocation theory, the
singularities which appear in spin lattices, and the interactions of lattice dislocations
with the magnetic structure of a ferromagnetic crystal. ‘

F. R. N. Nabarro
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1. Introduction

This chapter will concentrate on the most important techniques for the imaging of
dislocations and in particular upon significant recent developments which have not
yet been reviewed in other publications. There are a number of such recent advances,
notably in transmission electron microscopy, scanning electron microscopy, high-
voltage electron microscopy, field-ion microscopy, X-ray topography, and optical
microscopy, which will be reviewed here for the first time. Early developments, up to
1964, have been well covered in the book by Amelinckx [1].

The general scheme adopted for describing a particular imaging technique will be
to give first a simple qualitative physical explanation of the method and the theory,
followed by some experimental results and then a more detailed treatment. The
emphasis throughout will be on interpreting image structure in terms of object struc-
ture, and the appfoxima"‘tions,and assumptions normally made will be assessed.

Section 2 discusses transmission electron microscopy. The theory and principles
of electron propagation in crystals are preseated in some detail since this forms the
basis not only of sect. 2 but also of sects. 3 and 4. For accuracy and generality the
many-beam dynamical theory of electron diffraction is used. Included in sect. 2 is a
description of conventional imaging techniques, the effects of anisotropic elasticity
on dislocation images, the weak-beam technique, the interpretation of lattice images
and a discussion of computed micrographs.

High-voltage electron microscopy is considered in sect. 3, which contains an
assessment of the advantages of using higher voltages, a comparison of different
high-resolution imaging methods, the use of environmental cells and in-situ dynamic
experiments. Both scanning transmission and scanning reflection electron micro-
scopy are described in sect. 4 with applications to imaging defects in both thin and
bulk specimens. Bulk specimens are also considered in sect. 5, which deals with X-ray
topographic methods. Sections 6 and 7 briefly consider recent developments in field-
ion and optical microscopy respectively. -

2. Transmission electron microscopy
2.1. Conventional diffraction contrast methods

2.1.1. Principles - ]

The basic principles of the electron microscope are well-known (see, for example,
Hirsch et al. [2]) and hence will only be briefly summarised here. The electron
microscope is essentially analogous to the optical microscope except that the incident
radiation is a beam of electrons rather than a beam of light and the focussing lenses
are electromagnetic rather than optical. In a conventional electron microscope the
incident electrons typically have an energy of 100 keV, corresponding to a waveleggth
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of 0.037°A: thus the resolution set by diffraction-is of this order. In practice the
instrumental resolution is limited by lens aberrations and is typically a few A in
- favourable cases. If the specimen is cry@@Iline the scattered electrons are concentrated
in discrete directions, corresponding to_Bragg reflection directions, and these electrons
are brought to a focus in the focal plane of the objective lens, i.e. the diffraction
pattern is formed in this plane. An aperture (the objective aperture) may be inserted
in this plane to select only one spot of the diffraction pattern. The electrons in this
spot pass through the aperture to form an image in the image plane of the lens.
Additional lenses are normally used to provide further magnification up to about
500,000 times. If the objective aperture selects the spot formed by the directly trans-
mitted beam, the corresponding image is known as the bright-field image. If the
image is formed using a diffracted beam the image is called a dark-field image.
Electrons are relatively strongly inelastically scattered by solids and hence only
fairly thin,gpecimens can be studied by transmission electron microscopy. Typical
maximum usabie specimen thicknesses range from about 1 um for light materials
(e.g- aluminum) down to less than 1000 A for heavy materials (e.g. uranium). How-
ever, ifa high-voltage electron microscope is used, thicker specimens may be penetrated
(see sect. 3.1). The specimen is normally oriented at or near a low-order Bragg position
so that only one diffracted beam 1s strong: this is the so-called “two-beam condition”
(i.e. the direct beam plus one diffracted beam).

If the crystalline specimen were completely free of defects, unbent and of uniform
thickness, then the bright-field or dark-field image would be of uniform intensity.
However if the crystal contains a dislocation, the lattice planes are locally distorted
and hence diffract electrons differently from perfect regions of crystal. Thus disloca- -
tions may be imaged n bright or dark field, the image corresponding to the local
change in diffracted intensity produced by the distortion of the lattice planes. This
conventional method of imaging is known as diffraction contrast, and dislocations
were first imaged by this method in 1956 by Hirsch et al. [3] and independently by
Bollmann [4]. _ ‘

It follows from the above qualitative description that if the Bragg reflecting planes
operating are not distorted by the dislocation, then thiere will be no change in the
diffracted intensity, i.e. the dislocation will be invisible in the image. For example, for
a screw dislocation in-an isotropic medium planes parallel to the axis remain flat.
Hence if the diffraction vector g is perpendicular to the Burgers vector b no image
contrast is observed. Thus a screw dislocation is invisible if g-b = 0, and this criterion
can be used to determine the-direction of b by finding two sets of planes, g,and g,,
for which the invisibility criterion is satisfied: b is then parallel to g, X g,

It is possible to account for many of -the features of dislocation images by using
simple qualitative arguments similar.to the one used above. However, a detailed
quantitative interpretation of diSlocation images is often necessary, for which an -
accurate theory is required. The first attempt at this, based on the kinematical theory
of electron diffraction (Hirsch et al. [5]), is useful for qualitatively explaining various
image contrast features. The kinematical theory of electron diffraction assumes that
the. amplitude diffracted by a crystal is proportional to the Fourier transform of the
wystal. The theory is analogous to the use of Fourier transforms in optical diffraction

.
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theory in which the scattered amplitude in Fraunhofer diffraction is proportional to -
the Fourier transform of the object. It is also analogous to the first Born approxima-
tion in quantum mechanics in which the scattered amplitude is proportional to the
Fourier transform of the scattering potential. All of these single-scattering approxima-
tions are valid only if the scattered amplitude is weak. This is normally the case in
optics, it is often the case in quantum mechanical scattering problems (see standard
quantum mechanics texts for a discussion of the validity of the Born approximation):
it is, however, only rarely the case in electron diffraction. If a crystal is set at a low-
order Bragg reflecting position, the intensity of the Bragg diffracted beam reaches one
tenth of the intensity of the incident beam for a crystal thickness of typically only
20 A for 100 kV electrons, and the intensities of the transmitted and the diffracted
beams are equal for thicknesses of typically 60 A. Hence the kinematical theory is
invalid for crystals more than a few atoms thick which are oriented near to a Bragg
position. If the crystal is far from a Bragg position and the diffracted beam or beams
are weak, the kinematical theory may then be valid as a first approximation (see-
sect. 2.2 on the weak-beam technique). However due to its very limited quantitative
use the kinematical theory will not be discussed further here. The fact that single-
scattering Fourier transform theories are not normally valid in the electron micro--
scopy of crystals is not always appreciated, and has caused, and still causes, con-
siderable confusion, particularly in the interpretation of lattice images of crystals
containing defects (sect. 2.3). o

As emphasised above, in most applications of electron microscopy at least one
diffracted beam is strong, the kinematical th¢dry cannot be used and instead a dynami-
cal theory is necessary, that is a theory which takes into account multiple scattering
of, and coupling between, the various diffracted beams. Several formulations of a
dynamical theory exist (e.g. Bethe [6]; Cowley and Moodie [7], Howie and Whelan
[8]) which are all mathematically equivalent. The formulation that will be used
throughout this chapter is based on that of Bethe [6], and represents the wave func-
tion for fast electrons within the crystal as a linear superposition of Bloch waves. In
order to understand image contrast effects from defects it is first necessary to consider
electron propagation in a perfect crystal which is discussed below, defect contrast
being considered in sect. 2.1.3. )

2.1.2. Diffraction by perfect crystals

The basic theory and some applications will be outlined in this section. For a fuller
discussion see, for example, Hirsch et al. [22 or Cowley [9]. Since 100 keV electrons
have a velocity v = 0.55 ¢ (where ¢ is the velocity of light) it would seem that the
diffraction problem requires the solution of the Dirac equation. However the effects
of electron spin are usually negligible (Fujiwara [10]) and the problem reduces to
solving the Schrédinger equation for the system of the incident fast electron and the
crystal, provided that relativistically correct values for the electron mass and wave-
length are used. It is perhaps worth noting that electron diffraction theory is essentially
similar to band theory except that in electron diffraction the incident electron energy
is fixed and positive and the basic problem is to find permitted values of the electron
wave vector inside the crystal: in band theory the problem is to find permitted values
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of the electron energy (negative corresponding to bound states) for giver: values of the

wave vector (see Humphreys and Fisher [11]).
The Schrodmger equation for the fast electron within the crystal potentlal V(r)is -

P2(r) + @n *mlel/i”) [E + V(O)lg() = O, (1)

where y(#) is the wave function and m the (relativistic) mass of the fast electron. E is
the incident electron accelerating potential (so that the total energy of the incident
electron is |e|E), and ¥(r) is the crystal lattice potential, defined here as being intrinsic-
- ally positive since the incident electrons are attracted by the atoms.

Within the perfect crystal the periodic potential may be expanded as a Fourier
series based on the reciprocal lattwe

V(r) = Z v, exp (2nik-r). L )
=
(Throughout this chapter reciprocal space quaniities are defined as true reciprocals
of real space quantities.) . ‘
The electron wave function within the crystal may in general be represented by a
linear combination of Bloch waves,

Y@ = Z AVBOKD, p). ' 3)

Each Bloch wave is the product of a plane wave exp (2znik'’-r) and a function C(r)
which has the periodicity of the lattice. We may expand C(r) as a Fourier series based
on the reciprocal lattice to give

b = 3 €Y exp [2nik + 9)-rl. ; @

The constants may be collected together by defining a modlﬁed potentlal” Ur)
with Fourier coefficients
U, = (2mle|/h?)V, )
and a quantity K given by .
= (2mle|/R*)(E + V) - (6)

where X is the magnitude of the mean electron wave vector within the crystal after
allowing for the mean crystal potential (a small correction: typically E = 10° volts,
Vo < 10 volts).

Substituting egs. (2) to (6) in eq (1) and equatmg the coefficient multiplying each
exponential term separately to zero yields the set of linear equations

K7 - (W + gP1CY + ¥ U,C2, =0, ™

h#0

there being one such equation for each value of g (i.e. each reflection) considered.
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In the two-beam approximation, for example, there are two equations each consisting
of two terms as follows:
(K — k9H)CP + U C‘” =0

U,CP + [K* — (k9 + g)*ICP = 0. ’ )

The two-beam approximation is normally valid as a first approximation for
100 kV microscopy when the crystal is oriented at or near a first-order Bragg reflecting
posmon since for most simple structures the U, values decrease fairly rapidly with
increasing |g|, and at 100 kV |[C§"| and |CY), for j =1 and 2, are normally much
larger than the other coefficients (the two-beam approximation breaks down however
for higher incident electron energies, see sect. 3).

Equation (8) has a solutxon if the determinant of the coefficients,vanishes i.e. if

K — kD2 U_ . '
U, K-+ g =% @)
In the many-beam case, if n values of g are considered in eq. (7) (i.¢. the n-beam case),
then (9) becomes an n x n determinant, each diagonal term involving k'?, so that
the determinant is an.equation in k'??", there being n positive and » negative roots,
corresponding to forward and backward propagation respectively. At high energies
in transmission electron microscopy the backward propagating waves are only pro--
duced by “reflection” at the lower surface of the crystal. Application of the boundary
conditions shows that these reflected waves have extremely small intensity, hence
essentially if n beauns are considered, there are n different values of the electron wave
vector within the crystal for a particular orientation of the crystal with respect to
the beam.

Physically, the crystal acts as its own interferometer. An incident electron of fixed
energy |¢|E and fixed wave vector is partitioned by the crystal into a set of Bloch waves
of differing wave vectors k. As each Bloch wave propagates it becomes out of
phase with its neighbors (due to its different wave vector). If the crystal is wedge-
shaped, interference fringes called thickness fringes occur.
~ If n beams are considered there are n positive values of ¥ for a given orientation
of the crystal with respect to the incident beam. For a different orientation the n
permitted values of k) are different. A plot of the permitted values of ¥, the com-

_ponent of kY normal to g, as a function of orientation, is known as a dispersion
" surface, and is illustrated in fig. 1. If » beams are considered then the dispersion
surface has n branches corresponding to the n values of kY. The numbering system
used for labelling these branches and the corresponding Bloch waves has been a
subject of some confusion. Prior to about 1971, the system normally used in publica-
tions was to label the top branch of the dispersion surface (i.e. the branch with the
highest kY’ value) branch 2 and the next branch 1. There was then some confusion
~over whether the branch with the third largest k¢ value was labelled 3 or 4, some
publications choosing 3 and some 4. Since about 1971 most publications have used
an ordered labelling scheme (Humphreys and Fisher [11]) which numbers the dis-
persion surface branches from the upper to the lower, ie. 1, 2, 3, 4, etc. in order of
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decreasing k,. This scheme will be used throughout this chapter Apart from its
simplicity the scheme has the advantage of being consistent with band theory and
lattice vibration theory.

Values of. the Fourier coefficients of the modified potential U, may be obtained
from tabulated values of atomic scattering factors (see Hirsch et al. [2] for details)
and hence the 2-beam-approximation equations (8) may be solved by hand, or the
many-beam equations (7) may be solved by a computer to yield the values of the wave
vectors k' and of the Bloch wave coefficients cy

DISPERSION SURFACE
COPPER 100 kev ELECTRONS 200 Systematic Row

Fig. 1 Calculated dispersion surface for 100 keV electrons incident upon copper & 300 K. The many-
beam calculations take into account 20 reflections along the 200 systemauc row.
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The Bloch waves given by eqgs. (3) and (4) propagate to the bottom surface of the
crystal, where they decompose into their plane wave components. From egs. (3) and
(4), the amplitude in the gth diffracted beam leaving the crystal is

v, = 3 ADCY exp [2mi(k + g)t], (10)

J
where ¢ is the crystal thickness and (kY + g), represents the component of (k' + g)
in a direction parallel to . In the symmetric Laue case (i.e. when the diffracting
planes are perpendicular to the surface, which is normaily approximately the case in
transmission electron microscopy) applioation of the boundary conditions shows
that A” = ¢ (see Hirsch et al. [2]). Hence the intensity diffracted in the gth beam is

L= X 49¢) exp (2rikDe))2, an
J o

where by £ is now understood the component of k¥ parallel to r, which in the |
symmetric Laue case is k9 (z perpendicutar to 9).

If only one diffracted beam is strong and 2-beam theory is used, it follows from
eq. (11) that the intensity of the direct beam 1, is proportional to cos? (ntAk) and
the intensity of the diffracted beam 7, is proportional to sin? (xtAk), where Ak =
k™ — k. Thus for a wedge-shaped crystal 7, and 1, both oscillate with thickness
producing the well-known “‘thickness fringes”. Intensity is conserved (sin? + cos? =
1) for all ¢ as expected"since absorption has not yet been included in the theory. The
fringe* spacing is a maximum when Ak is & minimum, which corresponds to the
crystal being at an exact Bragg position (see fig. 1). The extinction distance &) is
defined as '

1 , 1
'§y T Ak (KD g

min

min
The diffracted beam has minimum intensity for ¢ = m¢, where m is an integer.

So far only elastic scattering has been considered. Inelastic scattering causes
electrons not only to lose energy but also to be angularly scattered out of the Bragg
beams. The objective aperture selects one of the Bragg beams to form the image, and
hence many of the inelastically scattered electrons are excluded from the imagé. Thus
inelastic scattering produces absorption. The effects of absorption may be simply
taken into account in the above theory by making the crystal potential and the
electron wave vectors complex. A justification for this phenomenological treatment
has been given by Yoshioka [12] (see also Hashimoto et al. [13D. ’

" Hence

. k(J‘) — + iqu). (12)

It follows from the boundary conditions that the direction of ¢ is along the inward
surface normal, hence the total electron wave function in the crystal is (using eqs. (3)
and (4))

W(r) = Z AV exp (=2ngYz) ¥ C9 exp [27i(kY + g)-#]. . (13)
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The effect of absorption is thus to attenuate each Bloch wave exponentially, as is
physically expected. In the absence of absorption, each Bloch wave excitation ampli-
tude in the crystal A is a constant (= C§’, from the boundary conditions at the top
surface of the crystal). The effect of absorption is to replace A by an exponentially
attenuated amplitude 4Y)(z), where

- AY(z) = AV exp (—2nqV2) _ (14)

and the origin of z is taken on the top surface of the crystal.
The intensity of the gth diffracted beam is, from eqs. (11) and (12),

L= ADCY exp (2nikt) exp (—2ngU'n)|2. as)
j N

The effect of absorption on the thickness fringes considered above is to produce
damped fringes. Typically only about 5 fringes are visible at 100 kV in a wedge-shaped
specimen of medium atomic weight.

- The values of ¢ differ for different j values, i.e. for different Bloch waves. Hence
some Bloch waves are more strongly absorbed than others. This phenomenon is
known as anomalous absorption (or alternatively as anomalous transmission). The
physical reason for this is that each Bloch wave has a different &Y value and hence a
different kinetic energy. Since the total energy (kinetic plus potential) of each Bloch
wave is constant (equal to the incident beam energy), the potential energies of the
Bloch waves must differ, hence each Bloch wave has a different localisation within
the crystal lattice. Now the main inelastic scattering mechanisms which give rise to
. absorption are phonon scattering and single electron excitation, and both of these
processes are reasonably strongly localised at the atomic positions (particularly
phonon scattering). Hence the Bloch wave which undergoes the greatest absorption
is the one which is the most strongly localised at the atom planes.

The intensity of the jth Bloch wave is |bY)?, which may be evaluated using eq. (4)
together with the values of & and C{”. Using the 2-beam approximation, [b‘V|? and
[p'3)|? are easily evaluated by hand. At the exact Bragg position the current in both
Bloch waves is parallel to the reflecting planes. The intensity distribution in wave 1 is
proportional to cos? (ng-r) and in wave 2 is proportional to sin® (ng-r) where the
origin of r is taken at an atomic position. This is illustrated in fig. 2. Hence clearly
wave 1 is strongly absorbed and wave 2 is well transmitted. This is the normal situa-
tion in 100 kV microscopy (but not necessarily at ! MV, see sect. 3).

For thick crystals at 100 kV, for which the transmitted intensity is essentially due
to wave 2 alone, eq. (15) gives for the bright-field intensity

Io(t) = |Co™®|* exp (—4ng?r), (16)

since 4 = C{». The orientation which maximises the penetration is hence that
orientation for which |C§?)| is large and simultaneously ¢® is small. Figure 3 gives
calculated many-beam plots of C§? and ¢". Clearly the orientation which maximises
the bright-field penetration is with the crystal oriented slightly positive of the first-
order Bragg reflecting position, as is well known experimentally. This is confirmed
in fig. 4 which plots the calculated transmitted intensity, for the bright-field and
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several dafk-ﬁeld images, as a function of the angle of incidence of the electron beam
for a 2000 A thick Cu crystal. Values of absorption parameters for use in electron
diffraction calculations have been given by Humphreys and Hirsch [15].

Fig. 2 The intensity distribution, relative to the Bragg reflecting planes, of Bloch waves 1 and 2 for a
crystal oriented at the exact Bragg position. Wave 1 is on the right and wave 2 on the left, using the
numbering scheme of ref. {11].

2.1.3. Diffraction by dislocations ‘ .
Dislocations produce image contrast essentially because they locally change the
orientation of the lattice planes, and thus they locally change the diffracting condi-
tions. Whereas-good penetration requires the transmitted intensity / to be large, good
image contrast requires d7/d8 to be large. Fortunately the orientation which maxi-
mises the penetration using 100 keV electrons (i.e. just positive of the first-order Bra gg
position) is also a good orientation for defect contrast since dJ/d# is large here as can
be seen from fig. 4. Using this figure we can obtain a qualitative idea of the amount of
image contrast produced by a dislocation, by noting the change in intensity produced
by a given change in orientation. This interpretation cannot be taken very far, how-
ever, since it essentially averages misdrientations within a column of imperfect crystal.
Most image contrast calculations in electron microscopy are bhsed upon the
column approximation (Heidenreich [16]; Hirsch et al. [5]; Howie and Whelan [8]).
In this approximation the imperfect crystal is divided into columns with the length of
each column being parallel to the reflecting planes operating. The displacement in a
given column is assumed to be a function of the z co-ordinate only and is represented
by R(z). The basic assumption of the column approximation is that each column may
be chosen sufficiently narrow that the displacement within it is essentially only a
function of z, yet sufficiently wide that an electron entering the top of the column is
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not scattered out of the column during its passage through the crystal. Use of the
column approximation greatly facilitates image contrast calculations since it essen-
tially enables the problem of solving a coupled set of three-dimensional partial
differential equations to be reduced to that of solving a coupled set of one-dimensional
ordinary differential equations (in z only), i.e. eq. (19).

Calculations for standard bright-field or dark-field images of dislocations show
that in most cases the column approximation is a very good app-oximation (Howie
and Basinski [17], Jouffrey and Taupin [18], Howie and Sworn [26]). However, for
high-resolution imaging of dislocations, using for example the weak-beam techmque
(sect. 2.2) or lattice imaging (sect. 2.3), calculations show that the column approxima-
tion is no longer valid. The approximation also breaks down at lower resolutions 1f
the crystal is very thick (Humphreys and Drummond [136)).

COPPER, 200 SYSTEMATIC ROW, 100kV l
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- Fig 3 Computed 20-beam-theory Bloch wave absorption coefficients, ¢, and amplitude excitation
enctricients for 100 keV electrons incidént upon copper at 300 K, with the 200 systematic row of reflections
operating. Reprinted from ref. [14], by courtesy of The Philosophical Magazine.
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Fig. 4 Computed many-beam-theory rocking curves for 100 keV electrons incident upon copper, 2000 A
“¥  thick, 200 systematic row. Reprinted from ref. [14], by courtesy of The Philosophical Magazine.

Whereas a perfect crystal scatters into discrete, Bragg directions, an imperfect
crystal scatters into all directions, and this scattering into directions other than Bragg
directions is called elastic diffuse scattering. For an isolated defect the elastic diffuse
scattering is peaked about the Bragg directions. The column approximation artificially
constrains all of the elastic diffuse scattering to travel only in the Bragg directions,
and the avoidance of the column approximation removes this constraint. If one is
interested in details of defect structure, for example in dislocation core structures, it
‘would seem in principle desirable to image using the elastic diffuse scattering itself,
i.e. by placing the objective aperture between Bragg spots rather than around them.
This has not yet been done owing to the experimental requirements of very high
microscope stability and resolution and the theoretical difficulties of image interpreta-
tion. However, elastic diffuse imaging would appear to be a likely area of activity in
the future. Such images should yield information on the atomic coordinates of the
dislocation core.

At present, the deformable-ion approximation is usually used in image interpreta-
tion. Let a perfect crystal be deformed. If the jth atom is moved from position r;to
r, + R(r,) the potential at any point » in the crystal is clearly changed since it depends
upon r — R. In the deformable-ion approximation, the potential at any point r in the
deformed crystal is identified with the potential at the point (r — R(r)) in the un-
deformed crystal. Hence the potential in the deformed crystal can be expanded as a
Fourier series, as was done for the undeformed crystal [eq. (2)], i.e.

V(r) Z [V, exp (—2nik- R)] exp (2nik-r). {a7n

-~ oo



