TESTING

WILLIAM E. HOWDEN

FUNCTIONAL PROGRAM
TESTING AND ANALYSIS

William E. Howden

University of California at San Diego

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotd Hamburg
London Madrid Mexico Milan Montreal New Delhi

Panama Paris S&o Paulo Singapore Sydney Tokyo Toronto

This book was set in Times Roman by Publication Services.
The editors were Karen M. Jackson and Joseph E Murphy;
the designer was Joan E. O’Connor;

the production supervisor was Denise L. Puryear.

Project supervision was done by Publication Services.

R.R. Donnelley & Sons Company was printer and binder.

FUNCTIONAL PROGRAM TESTING AND ANALYSIS

Copyright © 1987 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the publisher.

234567890 DOCDOC 89210987

ISBN 0-07-030550-1

Library of Congress Cataloging-in-Publication Data
Howden, William E.

Functional program testing and analysis.

(Software engineering series)

1. Computer programs —Testing. L. Title.
II. Series: Software engineering series (New York, N.Y.)
QA76.6.H7 1987 005.3'028'7 86-28220
ISBN 0-07-030550-1

PREFACE

Testing is an unavoidable part of any responsible effort to develop a software
system. Over the past 15 years more and more attention has been given to
this topic, but it is still a relatively new one and has consisted primarily of
an unintegrated collection of methods whose justification is intuitive rather
than scientific or mathematical.

This book presents an integrated approach to program testing and anal-
ysis which has a sound mathematical basis. It describes both previous tech-
niques, and how they fit together, as well as new methods. It provides a gen-
eral approach to testing and validation that incorporates all important
software life cycle products, including requirements and general and detailed
designs. The theory part of the book contains mathematical results that can
be used to characterize the effectiveness of different functional testing and
analysis methods. The results can be used to prove that well-defined classes
of faults and failures will be discovered by specific techniques. Functional
testing and analysis is a general approach to verification and validation and
not only integrates current techniques, but indicates fruitful directions for
continued research and development.

This book is written for the practicing software engineer and for the ad-
vanced undergraduate or graduate student. Although some familiarity with
basic software engineering concepts would be useful, all of the related ideas
are explained. This includes material on requirements and on general and de-
tailed design. The theoretical foundations part of the book relies on several
branches of mathematics, and all of this material is also fully explained.

If used as a text, the book is suitable for courses in software engineer-
ing or in testing and validation. For a general course on software engineering
it is recommended that it be used along with a good book on design or a gen-
eral software engineering text that covers design methodology in depth.

xi

Xil FUNCTIONAL PROGRAM TESTING AND ANALYSIS

The book has three major sections. The first section consists of the first
three chapters. It contains a discussion of functions, states, and types in pro-
grams and illustrates their central role in requirements, design, and coding
with two detailed examples. The second section contains the fourth chapter
and includes the theoretical foundations which are used to put functional
testing and analysis on a sound mathematical basis. This section outlines a
theory of testing based on fault and failure analysis, and contains results in
statistics, algebra, and graph theory. The basic concepts of the first and sec-
ond sections are combined to produce the systematic approach to testing and
analysis described in the third section, consisting of Chapters 5, 6, and 7.

It is not necessary for the reader to learn all of the mathematical results
in the fourth chapter in order to apply functional testing and analysis. It is
possible to skip most of this chapter and then only to look back at selected
material referenced in Chapters 5 and 6. The exception is Sections 4.1 and
4.2, which shoulid be read after Chapters 1, 2, and 3, and before going on to
Chapters 5 through 7. Section 4.2 describes the basic integrating concepts
used to build the systematic testing methodology that is detailed in the re-
maining chapters of the book.

Many of the methods described in the book depend on the use of
software tools for support. A complete collection of functional testing and
analysis tools is under construction and additional information about them is
available from Critical Software Systems, P.O. Box 1241, Solana Beach,
California 92075.

I would like to take this opportunity to thank all of my professional col-
leagues in software engineering, with whom I have had many insightful con-
versations. I would like to thank Patrick Dymond, Michael Fredman and
Elias Masry at UCSD for discussions on different aspects of the theoretical
material. The research upon which this book is based was funded by the Of-
fice of Naval Research, and I would like to thank the ONR for their con-
tinued support. I would also like to thank Chiquita Payne for her dedication
and patience in typing the manuscript and Sue Sullivan who worked on ear-
lier drafts of the material. Finally, I would like to acknowledge my depen-
dence on that source of all creativity and knowledge from whom I have
derived what modest inspiration guided the writing of this book.

William E. Howden
Solana Beach, California

CONTENTS

Chapter 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Chapter 2

2.1
2.2
2.3

2.4

2.5

2.6
2.7
2.8

Preface
Introduction

Testing

Testing and the Software Life Cycle

Testing, High-Level Languages, and Specifications
Testing and Proofs of Correctness

Functional Testing and Analysis

Verification and Validation

Tools

Organization of the Book

Functions

Functions and Data Types

Software Development and Functions
Functions and Requirements

2.3.1 Dating System Example

2.3.2 covar Statistics Program Example
Functions and General Design

2.4.1 Dating System Example

2.4.2 covar Statistics Program Example
Functions and Detailed Design

2.5.1 Functional Design Language (fd1)
2.5.2 Dating System Example

2.5.3 covar Statistics Example
Program Functions

Functions and Comments

Summary

.

AN B W = = -

vili FUNCTIONAL PROGRAM TESTING AND ANALYSIS

Chapter 3

3.1
3.2
33
3.4

35
3.6

3.7

Chapter 4
4.1
4.2
4.3

4.4
4.5
4.6
4.7

4.8
4.9

Chapter 5

5.1
5.2
5.3

5.4

States and Types

Software Development— States and Types
Data Types and Abstract Data Structures
Variables, Data Structures, and States
Types and Requirements

3.4.1 Dating System Example

3.4.2 covar Statistics Program Example
Types and General Design

3.5.1 Dating System Example

3.5.2 covar Statistics Program Example
States, Types, and Detailed Design

3.6.1 Dating System Example

3.6.2 covar Statistics Program Example
Summary

Theoretical Foundations

Theory of Testing and Analysis

Correct Programs and the Limitations of Testing

Theory of Functional Testing and Analysis

4.3.1 Functional Testing

4.3.2 Functional Analysis

4.3.3 Functional Testing and Analysis Failures

Statistical Testing

Expression Functions

Nonarithmetic Expressions

Conditional and Iterative Functions

4.7.1 Partially Effective Equivalence Rules for General
Classes of Relations

4.7.2 Effective Equivalence Rules for Discrete
Relations

4.7.3 Systems of Relations

Flow-graph Structures

Summary

Functional Program Testing

Introduction

Black-Box Testing

Control-Flow Coverage Measures

5.3.1 Statement and Branch Coverage
5.3.2 Path Coverage

5.3.3 Control-Flow Coverage and Functional Testing
Functional Testing Rules

5.4.1 Expressions

5.4.2 Conditional Branching

5.4.3 Iteration

5.4.4 Wrong-Variable Faults

30

30
30
31
32
32
32
33
33
34
34
36
37
39

42

42
43
45
46
48
50
51
53
59

63

67
69
75
86

89
89

91
91
95
98
100
101
103
105
106

CONTENTs iIX

5.5 Data-Flow Coverage Measures 106
5.5.1 Definition-Reference Chain Data-Flow Coverage 107

5.5.2 Data-Context Data-Flow Coverage 109

5.6 Symbolic Evaluation 1
5.6.1 Basic Concepts 111

5.6.2 Symbolic Evaluation of Nonalgebraic Programs 114

5.6.3 Symbolic Evaluation of Designs 117

5.6.4 Symbolic Evaluation Systems 118

5.7 Infeasible Paths and Automated Test Data Selection 121
5.8 Automated Test Oracles 123
5.8.1 Test Harnesses 123

5.8.2 Dynamic Assertions 124

5.9 Summary 125
Chapter 6 Functional Analysis 129
6.1 Introduction 129
6.2 Trace-Fault Analysis 130
6.3 Interface Failure Analysis 131
6.4 Module-Interface Analysis 131
6.5 Interface Analysis of Data Structure Operations 132
6.6 Data-Interface Analysis 137
6.6.1 Data Transformations 137

6.6.2 Sufficiency of Data-Interface Analysis 138

6.6.3 Identification of Data Types and Type Interfaces 140

6.6.4 Generation of Data-Type Interfaces 146

6.7 Operator- and Data-Interface Analysis Examples 149
6.7.1 Dating System Example 149

6.7.2 covar Example 151

6.7.3 Telegram Example 153

6.8 Program Comments 155
6.9 Summary 155
Chapter 7 Management and Planning 159
7.1 Introduction 159
7.2 Life-Cycle Management 159
7.3 Module, Integration, and Acceptance Testing 161
7.4 Bottom-up and Top-down Testing 162
7.5 Levels of Testing and Analysis 163
7.5.1 o-Testing and Analysis 163

7.5.2 B-Testing and Analysis 164

7.5.3 y-Testing and Analysis 164

7.6 Software Engineering Databases 165
7.7 Summary 167

Index 171

CHAPTER

1

INTRODUCTION

11 TESTING

Testing is a fundamental part of all branches of engineering, and it is an es-
sential part of software development. In manufacturing processes that in-
volve physical products, testing is carried out to detect materials defects. In
software development all errors are human errors, and it is tempting to hope
that errors can be eliminated with better development methods, better
trained programmers, or some kind of programming language or environ-
ment that proves to be a universal panacea for human fallibility. However,
there is no reason to believe that this will ever be the case, except in special
circumstances, and testing will continue to play a major role in software en-
gineering.

1.2 TESTING AND THE SOFTWARE
LIFE CYCLE

In the modern life-cycle approach to software development, a variety of
documents are produced before and during software development which
make the process less error-prone and more systematic. Life-cycle software
development may include requirements analysis methods such as data-flow
analysis,' specification systems such as Problem Statement Language/Prob-
lem Statement Analysis (PSL/PSA),? general design methods such as Struc-
tured Design® and Structural Analysis and Design Technique (SADT)4 and
detailed design techmques such as Program Design Languages® and Nassi-
Schneiderman diagrams.®

2 FUNCTIONAL PROGRAM TESTING AND ANALYSIS

The advantage of systematic life-cycle development is that it reduces
complexity by separating the description of different aspects of a software
system into parts. This simplifies the description and makes software de-
velopment easier and more systematic. It enables the detection of basic er-
rors earlier in the development process and decreases the cost of their elimi-
nation.

The approach to testing outlined in this book uses the information
about a system which is contained in a typical set of life-cycle documents.
The approach can also be applied, but less easily, to a system which consists
only of programs and no other documents.

1.3 TESTING, HIGH-LEVEL LANGUAGES,
AND SPECIFICATIONS

One way to reduce errors in programs is to use high-level languages, or lan-
guages which are specialized for particular areas of application. This reduces
errors by reducing the logical complexity of the object that must be created by
a programmer. The use of very high-level languages is feasible in applications
areas where large numbers of very similar programs are required, and new
programs can be constructed by providing the system specification in some
tabular format. There are a variety of commercial data processing program
construction systems like this, in which all the user has to do is specify file or
data-base formats. This is the only place in which testing can, foreseeably, be-
come unnecessary, but it is because there is no programming being done.

Ideally, it may appear that a general purpose formal specifications lan-
guage could be developed which would allow the specification of any pro-
gram, and that testing would become unnecessary because the program
would be generated mechanically from the specification and hence be cor-
rect. This is an unlikely possibility. If the specifications language were gen-
eral purpose, then the programmer would have to specify as much logical in-
formation in the specification as he previously had to in a program, and the
net result would be that the errors would be in the specification now instead
of the program. In principle, such a specifications language would be a kind
of programming language, possibly a worse one than a conventional lan-
guage, and no real problem would be solved by its use. The success with
high-level specifications languages for data processing systems is the result
of specialization rather than specification.

If a family of specialized specification systems could be developed
that would have the advantages of the data processing specification systems,
then errors and testing would become less important for the applications sys-
tems analyst. But this would be because he would no longer really be a pro-
grammer. The programming would be in the construction of the translator
which transformed the specifications into programs, and testing would play
its traditional, necessary role here.

INTRODUCTION 3

1.4 TESTING AND PROOFS
OF CORRECTNESS

It has often been quoted that “testing can only be used to detect the presence
of bugs, not to prove their absence.” The implication is that testing should
be abandoned and some form of proof method adopted. Before going into
the limitations of proofs it should be pointed out that testing has some very
important advantages over proof methods.

There is no such thing as an absolute proof of correctness; there are
only proofs of equivalency. Program proofs of correctness are proofs that
one description of a function is equivalent to another. Usually, one is a state
description in a formal logical language and the other is an algorithm de-
scription in a programming language. It often happens during software de-
velopment that it is necessary to invent some expression or function to carry
out a computation whose full specification is not yet available. A few
selected cases may be known, and a computational procedure constructed
that is characterized by those cases. After the experimental period, based on
testing, it will be possible to construct a more complete specification.

The dependency of proofs on formal specifications is a pervasive diffi-
culty in the attempt to use proofs of correctness. Formal specifications for
combinatorial or mathematical programs may be concise and may clearly de-
scribe the intended computational effect of a program, but for other pro-
grams this is often not the case. There are many programs for which formal
specifications are artificial and obscure, and much more difficult to con-
struct, read, and understand than the specified program. Formal specifica-
tions describe initial and final states of a system in terms of relationships be-
tween variables. Programs are transformers which change initial states to
final states. For many programs there is no reasonable way to express re-
lationships between initial and final states except in the form of the program
which establishes the relationship.

Another factor that inhibits the use of proofs of correctness is the diffi-
culty of constructing a program proof. It is a tedious, error-prone task, con-
sisting of many cases and inductions. Techniques have been developed to
simplify the proof process, but proofs may be longer and more difficult to
understand than the proved programs. In addition, proofs of correctness are
usually proofs of the correctness of the logic of an algorithm and not of pro-
grams. The peculiarities of fixed length word sizes, floating point numbers,
and other computer dependent properties are ignored. If they were not, the
proofs would become even more detailed and difficult to understand.

Although, in principle, it may be possible to prove the correctness of a
program, it may simply not be cost efficient. There is often a sense of
urgency in software development. A usable product must be completed
within a time frame that will not allow formal specification and proof. No
added value would be introduced into the system or program by formal

4 FUNCTIONAL PROGRAM TESTING AND ANALYSIS

specifications and proofs, even if this were to increase its relative mean time
between failure from 75 to 100 percent.

Continuing research in program proving will expand the scope of
applicability of and ease of use of proofs. For a variety of reasons, however,
it is unlikely that proofs will replace testing. Perhaps the most fruitful area
of application for proofs of correctness is in the design stage, where they can
be used to prove that certain general algorithmic concepts have some desired
property. Such proofs may be independent of the eventual structure of a pro-
gram and use traditional mathematical techniques, such as proof by con-
tradiction, that are difficult to use when proofs are tied to program structure.
Once the basic design ideas are proved, then testing and analysis can be used
to confirm that a designed and implemented program conforms to those
ideas. Both proving and testing are considered to have their place, and their
cooperative use should continue to increase.

L5 FUNCTIONAL TESTING AND ANALYSIS

Current Institute of Electrical and Electronics Engineers (IEEE) standards
define a bug in a program as a fault and the incorrect behavior of the pro-
gram induced by the fault as a failure. This terminology will be used
throughout the book.

Testing has traditionally been unsystematic and unreliable because
there was no unifying approach to combining different testing methods and
no theory to characterize the classes of faults and failures that could be
found by different methods. This book describes such an approach. The
basic idea is that programs can be viewed as collections of functions which
are synthesized from other functions, and that program faults correspond to
faults in synthesis. There are two very general ways of joining functions to-
gether —functional synthesis and structural synthesis.

In functional synthesis, expressions and other simple programming
constructs are used to construct an input-output function. The programmer
may not know the specification of the new function but is expected to know
what the correct output would be for selected input. General classes of func-
tional synthesis faults are defined, along with the kinds of tests needed to re-
veal those faults. Functional testing involves the testing of functions formed
by functional synthesis over fault revealing test data. It is called functional
testing since the emphasis is on execution of functions and examination of
their input and output data.

In structural synthesis, functions are joined together into graph-like
structures which describe the sequences in which they should be executed.
Failures correspond to wrong sequences of function invocation or to wrong
transmission of data between one function and another. Functional analysis
involves the analysis of programs for structural synthesis failures. In some

INTRODUCTION §

cases failures can be detected by the presence of inconsistent data interfaces,
and in others the programmer is expected to have a description of correct
function usage sequences.

Functional testing is a fault analysis method since it depends on the
definition and detection of specified classes of faults. In functional testing
the programmer exhaustively tests for classes of faults. Exhaustive testing
for all possible failures is not possible since the number of different possible
input-output pairs that would have to be examined is prohibitively large.
Exhaustive testing for classes of faults is feasible since the number of differ-
ent possible commonly occurring classes of functional synthesis faults is
relatively small. Functional analysis is a failure analysis rather than a fauit
analysis method since it involves looking for all possible structural synthesis
failures, that is, failures in function sequencing. This is feasible since it is
possible to prove that if there are any such failures, they will occur in a small
finite set of sequences which can be exhaustively examined. Functional anal-
ysis is more powerful in this sense, since it can detect the presence of any
fault which results in a function sequence failure. Functional testing can de-
tect only failure-causing faults for which it has been possible to construct
fault-testing rules. This may leave kinds of failures not caused by those
classes of faults undetected.

1.6 VERIFICATION AND VALIDATION

The words verification and validation are often used in discussing testing
and analysis, although they are used in a variety of contradictory and confus-
ing ways. The entire process of examining a software product to confirm that
it operates as intended is often referred to as “V and V’* without any attempt
to explain what the differences between the two words are or why two words
are even necessary. The word verification is sometimes associated uniquely
with proofs of correctness.

The following definitions are consistent with the original way in which
these two words were used. Verification refers to the activity of comparing a
software development product with some description of that product that oc-
curred earlier in the development process. General designs may be verified
with respect to requirements analysis documents, detailed designs with re-
spect to general designs, and programs with respect to detailed designs.
When the only development products are specifications and programs, then
programs are verified by comparing them with their specifications. This is
consistent with the use of the word verification to refer to proofs of correct-
ness, in which programs are proved equivalent to formal specifications.

Validation means to compare a software development product with the
user’s perceived requirements for that product. The term is sometimes used
to refer to customer acceptance testing when the final software system is

6 FUNCTIONAL PROGRAM TESTING AND ANALYSIS

tested in the environment for which it was intended. Other products besides
code can be validated. Requirements and design products may be compared
directly with user expectations through the use of prototypes or simulation.

Functional testing and analysis methods can be used for both verifica-
tion and validation and in this book are not organized into separate sections
based on this classification. They can be used with different life-cycle prod-
ucts, involving information from requirements, general design, detailed de-
sign, and coding.

1.7 TOOLS

Many of the testing and analysis methods which will be discussed depend on
the availability of tools. The basic features of such tools are described and
some of the currently available tools are referenced.

1.8 ORGANIZATION OF THE BOOK

The remaining part of the book begins with a discussion of functions, states,
and types. Functions and states are considered to be the basic concepts in a
system, and their occurrence in requirements, general and detailed designs,
and code is discussed. This is followed by a chapter on the theoretical foun-
dations of functional testing and analysis. The basic ideas of testing and
analysis are discussed along with the fundamental mathematical results upon
which the method is based.

The first part of the theoretical foundations chapter contains a discus-
sion of the impossibility of proving correctness by testing. This is followed
by a discussion of what can be proved. Sections on statistical testing, alge-
braic foundations for functional testing, and graph theory foundations for
functional analysis are included.

The next two chapters in the book describe functional testing and func-
tional analysis. The application of the basic theoretical results to practical
functional testing methods is described in the first of these two chapters. The
second describes module and structural interface analysis, the basic tech-
niques of functional analysis.

The final chapter is on the planning and management of software test-
ing. It contains advice on the selection and use of testing and analysis
methods. Three software quality assurance packages are suggested, ranging
from an inexpensive, manual approach to an expensive, fully automated ap-
proach.

REFERENCES

1. T. DeMarco, Structured Analysis and System Specification, Yourdon Press, N.Y., 1978.
2. D. Teichroew and E. Hershey, PSL/PSA —Computer aided techniques for structure and

INTRODUCTION 7

documentation and analysis of information processing systems, IEEE Transactions on
Software Engineering, SE-6, 1980.

. E. Yourdon and L. Constantine, Structured Design, Prentice-Hall, Englewood Cliffs, N.J.,
1979.

. D. T. Ross, Structured Analysis (SA): A language for communicating ideas, IEEE Transac-
tions on Software Engineering, SE-3, January 1977.

. S. H. Caine and K. E. Gordon, PDL—A tool for software design, Proceedings National
Computer Conference, vol. 44, 1975.

. L. Nassi and B. Schneiderman, Flowchart techniques for structured programming, ACM
Sigplan Notices, 8, 1973.

CHAPTER

2

FUNCTIONS

2.1 FUNCTIONS AND DATA TYPES

Mathematically, all functions are of the form f: a — b where fis a function
which, for every object of type a, returns an object of type b. In the simplest
cases, types are sets of simple objects, such as integers or reals, and in more
complex cases they are structured objects having different components.

In defining a function, the data which it operates on and which it pro-
duces may be discussed either directly in terms of types or indirectly in
terms of properties of variables and data structures used to store data of a
specified type. The latter is more common in the more detailed phases of
software development, when it becomes necessary to choose variables and
data structures.

2.2 SOFTWARE DEVELOPMENT
AND FUNCTIONS

Functions and their data are the basic conceptual units that are used to build
software. They are used not only in programs but also to construct require-
ments, and general and detailed designs. They may be both formally and in-
formally defined. The central role of functions in software development is il-
lustrated in the following sections. In the first section, the functions in the
informal requirements for a data processing system and the functions in the
formal specification for a scientific program are described. This is followed
by sections describing the functions in the general and detailed designs for
these examples.

FUNCTIONs 9

It is not necessary for the reader to understand the examples in com-
plete detail. The point is to illustrate how function and data-type definitions
arise in and are critical concepts in all phases of software development.

2.3 FUNCTIONS AND REQUIREMENTS

In the first of the following examples, Structured Analysis is used to give an
informal set of requirements for a computerized dating system. In the sec-
ond, mathematical formulae are used to give formal specifications for a sci-
entific program. These two examples are representative of the variety of
methods that can be used to provide preliminary descriptions of a proposed
program. In general, requirements will be informal for systems and pro-
grams that are new and are not translations of previously constructed pro-
grams, or for translations from a formal noncomputational logical language,
such as mathematics, to a computational one.

The purpose of the examples is to illustrate the central role of functions
in requirements and to show how their presence can be easily identified in
Structured Analysis documents.

2.3.1 Dating System Example

In Structured Analysis' the requirements for a system are described using
data-flow diagrams and data dictionaries. The method is commonly used to
describe the requirements for data processing systems. Data-flow diagrams
consist of arcs, which represent data flow, and nodes, which represent data
transformations. Figure 2.1 contains the data-flow diagram for a com-
puterized dating system. The system is expected to find the best date in its
database for individual clients. Clients and dates are part of the same popula-
tion and each client’s dating information is expected to be in the datefile
database. The information stored for each date consists of the personal and
physical characteristics of the date as well as the personal and physical

daterequest

FIGURE 2.1. Data-flow diagram for dating system.

