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PREFACE

This book reflects the authors’ experience in teaching partial differential
cquations, over several years, and at several institutions. The viewpoint is
that of the user of mathematics; the emphasis is on the development of
perspective and on the acquisition of practical technique. '

Illustrative examples chosen from a number of fields serve to motivate
the discussion and to suggest directions for generalization. We have provided
a large number of exercises (some with answers) in order to consolidate and
extend the text material. . ‘

The reader is assumed to have some familiarity with ordinary differential
equations of the kind provided by the references listed in the Introduction.
Some background in the physical sciences is also assumed, although we
have tried to choose examples that are common to a number of ficlds and
which in any event are intuitively straightforward.

Although the attitudes and approaches in this book are solely the respon-
sibility of the authors, we are indebted to a number of our colleagues for
uscful suggestions and ideas. A note of particular appreciation is due to
Carolyn Smith, who patiently and meticulously prepared the successive
versions of the manuseript, and to Graham Carey, who critically proof-
read most of the final text.
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INTRODUCTION

We collect here some formal definitions and notational conventions.
Also, we analyze a preliminary example of a partial differential equation
in order to point up some of the differences between ordinary and partial
‘differential equations.

The systematic discussion of partial differential equations begins in
Chapter 1. We start with the classical second-order equations of diffusion,
wave motion, and potential theory and examine the features of each. We
then use the ideas of characteristics and canonical forms to show that any
second-order linear equation must be one of these three kinds. First-order
linear and quasi-linear equations are considered next, and the first half of
the book ends with a generalization of previous results to the case of a
larger number of dependent or independent variables, and to sets of equa-
tions. * '

Included in the second half of the book are separate chapters on Green'’s
functions, eigenvalue problems, and a more extensive survey of the theory_
of characteristics. Much of the emphasis, however, is on practical approxi-
mation techniques; attention is directed toward variational methods,
perturbations (regular and singular), difference equations, and numerical
methods. ' )

1.1 DEFINITIONS AND EXAMPLES

A partial differential equation is one in which there appear partial deriva-
tives of an unknown function with respect to two or more independent

1



2 INTRODUCTION

variables. A simple example of such an equation is
—+ ——ou=0 (L1)

where ¢ is a constant. By a solution of this equation in a region R of the
(z,y) plane we mean a function u(z, y) for which u, du/dz, and ou/ay
are defined at each point (z,y) in R and for which the equation reduces
to an identity at each such point. Such a function u is said to satisfy the
equation in R.
We denote partial derivatives by subscripts, so that wu, = du/dz,
= Qu/01?, us = %u/dz dy, etc. Other examples of partial differential
equatlons are

Tz + Uy — Ty + Bu, — u = et (1.2)
Uzzy — UU; + SiD(zU) = 0 1.3
Uzyzz + 2U;: —u = Sin(x’ + yZ) (1.4)

[In Eq. (1.4), u is a function of the three variables z, y, z.] Since the
hi hest-order partial derivative that occurs in Eq. (I.1) is the first, Eq.
(1.1) is said to be a first-order equation. Similarly, Eqs. (1.2), (1.3), and
(1.4) are of the second, third, and fourth orders, respectively.

An important property that a partial differential equation may or may
not possess is that of linearity. By definition, a linear partial differential
equation for u(z, y) has the form

Z E (2, Y)

gy
Py = g(z,y) (1.5)
where @..(z,y) and g(z,y) are given functions of z and y, and where
N, M are fixed positive integers. (We define 9°u/ax° dy° to equal u.) If
g9(z, y) = 0, we say that Eq. (1.5) is homogeneous. As with ordinary dif-
ferential equations, the applicability of the principle of superposition is
what makes linearity a useful property. Let U(z, y) be one solution of
Eq. (L5), and let each of a set of functions P (z,y), u®(z,y),...,
u®(z, y) be solutions of the homogeneous counterpart of Eq. (1.5); i.e.,

gnimy (D .
Z Z (2, Y) -~ Tm =% I=L2..,p
Nl gypuad)
Then if a®, a®, ..., a® are any p chosen constants, direct substitution

into Eq. (1.5) shows that
u = U + a(l)u(l) + a(’)u(’) + .o .+ a(ﬂ)u(l’)

is also a solution of Eq. (1.5).
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Thus, Egs. (I.1), (1.2), and (I.4) are linear, whereas Eq. (1.3) is
nonlinear. Only rarely can one make much formal progress with nonlinear
equations; fortunately, many equations of practical interest turn out to be
linear (or almost linear).

Just as with an ordinary differential equation, many questions can be
asked in connection with an equation such as (I.1). For example, (1) what
function or functions, if any, satisfy Eq. (I.1) when ¢ = 1? (2) For what
values of o does a function u(z, y) exist that satisfies Eq. (I.1)? (3) How
many functions satisfy Eq. (I.1) in y > 0, —o <z < « if we also
require that u(z, 0) = 22 for z in the interval (0, 1)?

In contrast to most of the partial differential equations we will en-
counter, Eq. (1.1) is rather easy to solve explicitly. In fact, for any value
of ¢ we can define a new function ¢(z, y) via

u = ¢-exp[lo(z + y)]
(n_oting that the exponential factor is always nonzero); then ¢(z, y)
satisfies the équation . .
¢+ ¢, =0 (1.6)

With the change in variables £ = z + y, 7 = z — v, and with
N (

— ot o
v = o (1, 12)

[i.e., ¢(z, y) = ¥(& n) at corresponding points (z, y) and (¢, 1) ], Eq. (1.6)
becomes
20 =0

so that ¢ is a function of y alone, say f(n). Since 7 = z — y, we can say ‘
equivalently that ¢ must be a function of (# — y) alone. Thus « must
have the form

u=fz - y) -explho(z + 4)] (L7)

where f is an as-yet-undetermined function of the argument (z — y).
Conversely, the reader should show that if we choose any continuously
* differentiable function f and define a function » by Eq. (I1.7), then u will
satisfly Eq. (I.1).

The reader may now answer such questions as those posed above. In
particular, the answer to question (3) ,can be found by use of Eq. (1I.7).
At y = 0, we have

u(z, 0) = f(z) -exp[}oz]
and if this is to equal 2 for z in (0, 1), we must choose f(z) such that
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f(z) = a? exp[—40z] for z in (0, 1). Replacing the argument z by z — y,
it follows that :

fle—vy) = (z —y)exp[—}o(z — y)] (L8)

for 0 < z — y < 1. Thus in that region of the (z, y) plane lying between
the linesy = zand y = z — 1, Eq. (1.7) yields

u= (z — y)v (1.9)

Outside the strip 0 < z — y < 1, f(z — y) can be any continuously dif-
ferentiable function of z — y that, at z —y = 0. and z — y = 1, joins
continuously and with continuous first derivatives onto the function
described by Eq. (I1.8). The answer to question (3) is therefore that there
are infinitely many solutions.

Notice that the general solution (1.7) involves an undetermined function;
rather than simply an undetermined constant, as would be the case for
a typical first-order ordinary differential equation. We can therefore
anticipate that to determine completely the solution to an equation such
as (I.1) we will have to specify u along some curve, rather than merely at
a single point. Moreover, even such a specification of the solution along
a curve may determine the solution only within a region determined by
that curve, as in the example just discussed. 4

The above discussion can be generalized in several ways. Instead of only
two independent variables z and y, we may have a number of such vari-
ables, and instead of only one dependent variable u, there may be a number
of such functions to be determined. We will let a single example suffice.
If « and v are each functions of (z, y, z), then the equations '

uU: + uuy + uL, = 1
x’un+u,+vu=sin(z+u)

would form a coupled pair of nonlinear equations for « and .

As a different kind of generalization, we can weaken the term “solution”
as defined in the first paragraph. It may be physidally reasonable to permit
a particular derivative, for example, to be discontinuous at a certain point
-or along a certain curve in the (z,y) plane, and perhaps even greater
liberties with the idea of a “solution” can be taken when they are consistent
with the context in which a problem arises. We shall encounter such situa-
tions later in this book, but in the early sections the given definition is to
apply unless an alternative is explicitly stated.

The subject of partial differential equations is a broad one, and it seems
useful to begin by acquiring experience with certain frequently en-
countered special equations. This we will do in the next few chapters.
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In so doing we shall focus attention primarily on the techniques by which
equations are generated (as a result of model-building) and by which
solutions are found, and on the features that charactenze these equations
and their solutions.

Throughout, it will be assumed that the reader is familiar with, or can
easily refer to, such properties of ordinary differential equations as are
discussed in standard texts.f The abbreviations ODE and PDE will some-
times be used for “ordinary differential equation” and “partial differential
equation,” respectively. When particular attention is to be directed to
a continuity property, the notation C‘ may be used to indieate con-
tinuity of nth derivatives. When no specification to the contrary is made,
it is to be understood that boundary curves or surfaces are smooth, in the
sense of having contmuously turning tangents, and that functional data
specified on such boundaries are continuous.

The problems are considered to be an integral part of the text. The
reader who evades them will miss 729, of the value of the book.

t A representative selection follows: Kreysaig (1967, Chaps. 1-4); Boyce and DiPrima
(1969) ; Coddington (1961); Birkhoff and Rota (1962); Carrier and Pearson (1968);
Ince (1956); Kamke (1948; this text contains a dictionary of solutions).
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THE DIFFUSION EQUATION

1.1 DERIVATION

One of the more common partial differential equations of practical in-
terest is that governing diffusion in a homogeneous medium; it arises in
many physical, biological, social, and other phenomena. A simple example
of such an equation is

¢ = a’¢,f (1.1)

Here z is position, ¢ time, a a positive constant,t and we seek a function
¢(x, t) satisfying this equation for a certain range of z and ¢ values. In
addition, ¢ is usually required to satisfy certain auxiliary conditions.

Much of our attention in this chapter will be directed toward Eq. (1.1)—
the one-dimensional diffusion equation with constant coefficients. How-
ever, before considering properties of the equation itself, it seems worth-
while to derive it (with reasonable care) in at least one context in which
it arises. We choose the problem of heat flow along a thin rod with insu-
lated sides, since the associated physics is rudimentary.

Let the rod be oriented along the z-axis; denote its cross-sectional area
by A, its density by p, its specific heat by c, and its thermal conductivity
by k. We take the temperature ¢ (measured relative to some chosen refer-
ence level) as being a function of z and ¢ only, i.e., ¢ has the same value at
each point in any chosen cross section. To start with, we restrict ourselves

t We write the coefficient as a? for future convenience.
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to the case in which each of A, p, ¢, and k is a constant (and so is independ-
ent of z, ¢, or ¢). .

Let us single out for consideration a portion of the rod lying between any
two points a and 8, with 8 > «. From the definition of specific heat the
rate at which thermal energy is accumulating within this portion of the
rod is

, i
R = / ¢.(z, t)cpA dx (1.2)

However, heat is transported by diffusion in the direction of, and at a rate
proportional to, the negative of the temperature gradient. Thus, the net
rate R, at which heat enters the segment a<z<Bis

R‘) = kAd’:(ﬂ; t) - kA¢z(a; t) (1°3)
Clearly, R, = R,. Hence

8
[ 0z, 0cot do = kAgu(8,1) — kdou(a, 1

8
- kAf ee(z, 1) dz

It follows that
. .
/ [¢cpA — kAd..]dz = 0 (1.4)

But a and 8 were arbitrarily chosen'positions along the rod. Equation (1.4)
can hold for 2ny choice of « and 8 only if the integrand is identically zero.t
This implies then that

¢1CPA _ kA¢,, = 0
or

b = a¢.. (15)
where a* = k/(cp) is termed the thermal diffusivity.

t The basic theorem to which we appeal here is as follows. Let ¢ (z) be 4 continuous
function of z satisfying the condition that J%% () dzr = 0 for all choices of o and B in
some interval. Then ¢ (z) = 0 in that interval. For otherwise, ¥ {x) would be nonzero
at some point 7o in the interval, and in consequence of continyity; ¥ (z) would be nonzero
and would have the same sign as ¥(20) in some small subinterval around zo; a choice of
« and 8 within this subintervsl would then lead to a nonzero value of the integral, which
provides a contradiction. .,

To use this theorem, we require that the integrand of Eq. (1.4) be continuous, and
for temperature this is a reasonable physical expectation.



