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Preface

The use of computer-based image analysis systems for all kinds of images, but
especially for microscope images, has become increasingly widespread in recent years,
as computer power has increased and costs have dropped. Software to perform each of
the various tasks described in this book exists now, and without doubt additional
algorithms to accomplish these same things more efficiently, and to perform new kinds
of image processing, feature discrimination and measurement, will continue to be
developed. This is likely to be true particularly in the field of three-dimensional
imaging, since new microscopy methods are beginning to be used which can produce
such data.

It is not the intent of this book to train programmers who will assemble their own
computer systems and write their own programs. Most users require only the barest of
knowledge about how to use the computer, but the greater their understanding of the
various image analysis operations which are possible, their advantages and limitations,
the greater the likelihood of success in their application.

Likewise, the book assumes little in the way of a mathematical background, but the
researcher with a secure knowledge of appropriate statistical tests will find it easier to
put some of these methods into real use, and have confidence in the results, than one
who has less background and experience. Supplementary texts and courses in statistics,
microscopy, and specimen preparation are recommended as necessary.

This text was originally created for use in teaching both a regular semester course
and a one-week summer short course in image analysis. Although aimed initially at
students in materials science and engineering, the courses have consistently attracted
people from the life sciences, veterinary and medical schools, food sciences, forest
products, geology, and archaeology, and so more examples and terminology from -
those fields have been incorporated. Many of the same methods, and indeed the same
computer systems, can be used for macroscopic applications ranging up to astronomy
and remote sensing, but the terminology used here is primarily that of the microscopist.

Of course, there are many kinds of microscopy. These include not only the familiar
light and electron microscopes, but also ion, acoustic, X-ray, magnetic resonance, and
other devices, and even analytical instruments not usually thought of as microscopes
that nevertheless produce two- or three-dimensional arrays of data that can be treated
and understood as images. Not all of the techniques covered here are appropriate to all
of these kinds of images, but most of the useful methods are covered.

There is no substitute for actually using these methods, and no incentive better than
the need to perform a real task. The reader or student with access to a source of images
of specimens that are of real interest, and some computer-based image analysis system,
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should "try out" as many of the various operations as possible to better understand their
consequences, as each subject is considered.

Finally, the user of these systems and methods should be alert to an important side-
effect of studying this material - it should also make you a better observer. As you learn
what the computer "sees" in images, you will learn to see some of it yourself. This will
assist in selecting the proper algorithms for processing, discrimination and
measurement, as well as forcing you to be a more careful microscopist, producing the
best possible images for analysis.

This text, with all its figures and tables, was prepared on a Macintosh computer
and printed directly on a Laserwriter, so any errors are solely my own responsibility.
Special thanks are due to Chris Russ (Analytical Vision, Inc., Raleigh, NC) who has
helped to develop methods and write many of the programs that execute these image
analysis algorithms (also on the Macintosh), to John Matzka (Plenum Publishing
Corp.) who has patiently tried to educate me in the preparation of book manuscripts,
and to Helen Adams, who has long understood and tolerated my compulsion to
undertake writing projects like this one.

John C. Russ
Raleigh, NC
February, 1990
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Chapter 1

Introduction

The importance of images

Mankind's principal means of interacting with his environment is visual. In teaching
students, I sometimes encounter those who express themselves by saying "I hear what
you're telling me" or "I grasp that idea,” but most of the time the expression is "I see
what you mean." In fact, students who are principally auditory or tactile learners
sometimes have real problems in dealing with engineering or scientific material that is
presented in textbooks heavy with diagrams and graphs. Most of us learn visually. As
age diminishes the acuity of our senses, we use eyeglasses commonly, hearing aids
occasionally, and practically never any prosthetic aids for any of the remaining senses.
The Chinese proverb that a picture is worth 1000 words probably underestimates.

This affects the kinds of scientific research we do, as well. For instance, the recent
space probes to Comet Halley carried a number of sophisticated and important
instruments, ranging from magnetometers to mass spectrometers. But it was by the
pictures they returned that we judged their success (and this has been true of most of our
other space projects as well). Many scientific instruments directly produce pictorial
images (such as electron microscopes); others that do not usually have some type of
graphics display (for instance to show a spectrum), expecting the operator to be able to
extract meaning more readily from this than from a list of numbers.

This influence is even being felt in unexpected places. The "hottest" recent
development in computers, popularized by the Macintosh, is the use of "icons,"” little
pictures representing programs or data, which the user can recognize and point to instead
of having to read words from the screen (Figure 1-1).

The evolution of man's visual apparatus has made it our most important and relied-
upon sense by tailoring it to extract meaning from images. Approximately 60 percent of
the sensory inputs to the brain come from the visual system. Not all animals have that
reliance: bats use sound echolocation, fish have a pressure sensing organ we don't even
possess, some snakes sense heat, birds and some bacteria respond to magnetic fields,
and many animals have a sense of smell that communicates important information about
the world around them. We find it hard to imagine what the world "looks like" to such an
animal; in fact the word "imagine" itself carries with it an implicit visual metaphor.

Why measure images?

The fact that humans can easily interpret images does not mean we should not - or do
not need to - use computerized methods for image measurement. In fact, it increases our
desire to do so. One purpose can be to better understand the visual process itself, by
duplicating or emulating its responses. That is not our goal here.
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Figure 1-1: Example of a Macintosh screen with icons.

Computerized "understanding" of images, for instance the kind of real-time
interpretation of a changing scene that allows us to guide a car down a road, requires a

massive investment of computer resources and even so can deal with only very simplified
situations. That is not our goal, either.

But recognizing, counting and measuring the size, shape, position, density, and other
similar properties of particular objects in an image is something that is well within the
power of mini- and microcomputers, and can be done by the computer relatively quickly
with excellent reproducibility. Images in a form suitable for acquisition and analysis are
produced by a variety of instruments, and computerized measurement can be used to
extract specific information from the images much more accurately and reproducibly than
a human can without such aid. In fact, human observers tend not to do this very well,
with results that vary from observer to observer and from time to time. This perhaps
reflects the fact that in normal situations, humans rarely need to exactly measure an object
in an image. Instead, they can interact with their environment, to bring a comparison
object or ruler into play, for example.

Computer image measurement is less easily distracted from what is important by
trivia in the image, and is also better than a human observer at paying attention to all of
the details present. It doesn't get bored, and it makes no (or at least very few and usually
explicit) assumptions.

On the other hand, humans are very good at recognizing objects, often based on very
incomplete or unconventional images, and this capability is much harder to program into
the computer. There is considerable evidence that humans literally "turn things over" in
the mind, to obtain the best viewpoint for examination or comparison, as shown in
Figure 1-2. This is beyond the capability of most computer methods now.
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The process of image measurement involves an enormous reduction in the amount of
data, by selecting from the original image those objects and parameters that are important.
An original image may represent a million separate points stored in the computer (in the
human eye, there are more than 150 million individual receptors on the retina). But the
desired information may be as simple as (e.g.) the number of white blood cells on a
slide, the size (width, etc.) of a device in an integrated circuit, the variation in the amount
of a phase near the surface of a metal, or even just the presence of a tumor in an X-ray
image. This selection and reduction is at the heart of image analysis and measurement. It
is achieved by ignoring irrelevant information.

Computer methods: an overview

Most of the images that we will deal with here are single, two-dimensional ones,
much like a single-eye look at of some real world view. In many cases we will further
limit ourselves to a monochrome (black, shades of grey, and white) image rather than full
color. The later chapters will deal with the additional information that can be obtained
from multiple images, either used in a stereo (two-eyed) sense, or a series of parallel
sections through an object, or projections in many directions as used in tomography. But
even when several images are involved, each single one is usually dealt with to some
extent separately so we are justified in first considering how to work with an individual
image.

Many of the computer methods use algorithms that either consciously or accidentally
mimic many aspects of human vision. For convenience, it is usual to separate the human

/.
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Figure 1-2: Which of these objects are the same? The length of time required to
decide is proportional to the angular difference in the object orientation.
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visual process into "early” and "late" vision. The former roughly corresponds to the
processing of information in the retina and the neural networks close to it, before the
higher level data is transmitted to the brain, while the latter refers to the further
unravelling of the information in the brain, where more "learned" facts about the world
can be brought into play. The distinction also has a rough correspondence to the
distinction between extracting low level information from the image, such as the
presence, location and orientation of edges, boundaries, and perhaps objects ("early”
vision), as compared to the use of this information to "understand" a scene and the
relationships between the objects present in it.

Most of our computer methods for image analysis and measurement use algorithms
related to “early" vision. There is another large and active field, for instance connected
with research in robotics and artificial intelligence, that seeks to understand and describe
scenes, but we will not be dealing with it here. Fortunately, most of the images that are
important for analysis and measurement are not "general” in nature, but are obtained in
highly controlled situations where much is known about the specimen and the viewing
conditions.

The examples are generally taken from the field of microscopy, but we will see that
the same techniques apply (with a few additions and restrictions) to astronomy, remote
sensing (satellite photos), and so forth. In all of these cases, we generally know
beforehand that the subjects are (for example) flat surfaces cut through a material, or
projected images through a thin section of the sample, and that the image contrast is
primarily produced by some particular interaction such as light scattering or absorption,
secondary electron or X-ray production, and so forth. This greatly simplifies the
interpretation of the image. It also permits some computer modelling to predict the images
that should be obtained from particular structures and objects.

The reproducibility of computerized image analysis and measurement methods can be
far better than that of a human observer because the algorithms overtly ignore much of
the content of the image, and the sensors and discriminators respond only to the image
itself. Humans are influenced by many other things (hunger, emotional response to
stress, etc.) that clog up the neural pathways and "take our minds off" the job at hand.
This causes us to miss things in images that would otherwise be obvious (just after an
argument, I might drive through a stoplight because I didn't "see" it). Likewise, we
respond to information in the image other than that which we need to see (I might also

drive through the stoplight because I was busy watching the bikini-clad blonde on the
corner).

{ As another example, I might see the stoplight, but knowing that it was 2 a.m., that
there were no headlights visible in either direction, and that I was in a hurry, I might go
through the light anyway. That isn't computer vision, it's Artificial Intelligence (AI).}

The often observed result is that reproducibility tests on the same images show large
variations between different persons, or the results from a single person at different times
of the day or week. Computer—-based measurement does not show this pattern, and the
variations are more or less directly tied to simple statistical patterns of fluctuation, so that
the errors can be predicted and in many cases controlled.

On the other hand, this reproducibility does not imply accuracy. The speedometer in
my car always reads 55 at a particular speed (reproducibility), but that is of little value in
arguing with the trooper who pulls me over and says his radar clocked me at 63
(accuracy, presumably). Some of the techniques we employ require calibration against
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some other external source, such as known standard specimens or mathematical
simulation, to produce accurate results.

Implementation

It is easy to be distracted from the real purpose of image analysis and measurement
by the hardware and software used for its implementation. There are computer-based
systems in existence, some of them commercially available, that employ many widely
different approaches to similar problems. Some of the more obvious differences are
sequential vs. parallel processing, hardware vs. software calculations, and various
computer languages.

These differences are all unimportant compared to the choice of appropriate
algorithms to carry out the desired method. In principle, any result obtained by a
massively parallel computer employing hardware array processors and programmed in
LISP can also be obtained using a conventional sequential computer with only software
calculations and using Basic. There may be a noticeable difference in the ease with which
the programmer initially implemented the method or the convenience with which it can be
modified, and there may be a significant difference in the speed with which it can be
applied, but the result should be indistinguishable.

Serial computers (the classic "von Neumann" architecture) perform one operation at a
time, albeit at the rate of a few million per second. Data values are fetched from memory
to a central processor, combined with other values, and written back to memory. This
produces a bottleneck that limits the number of calculations that can be performed per unit
time. Particularly for images, in which we very often want to perform the same operation
or series of operations for every point in the picture, or perhaps to perform the same

measurement for every object, it is particularly attractive to find some way to bypass this
bottleneck.

Parallel computer architectures are actively being developed which allow this.
Generally, they employ a fairly large number of identical processors (often single chips,
in this era of large scale integrated circuits), each with its own program memory and
perhaps its own data memory, and some means of communicating with the other
processors. Two particular arrangements have been especially used: the processor array
and the cosmic cube (Figure 1-3). In both cases, each processor might, for example, be

Cosmic Cube Processor Array

Figure 1-3: Two different parallel computer architectures.
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given a portion of the image to work on. The image itself might either be written into the
dedicated data memory of the processors, or each processor might also be able to access
the main memory holding the image.

As the processors do their work simultaneously, they sometimes need results from
the work of other processors (for instance to get information on neighboring points that
lie in a different segment of the image belonging to another processor). This information
is provided by communication between processors. In the cosmic cube architecture, each
processor has a direct communication link with its neighbors. In the processor array
case, there is another computer, nominally the boss who assigns the tasks and sends the
data, but in actual practice more the mailman who carries messages back and forth. In
either case, the total computation time is reduced nearly in proportion to the number of
processors assigned to the task.

Assigning each processor a different portion of the image is not the only way that
parallel computation can be organized, of course. In some cases it is more attractive to
assign each object to a different processor, to classify it and measure its parameters and
to determine inter-object comparisons, spacings, etc. from its neighbors. This method is
especially attractive when object recognition is required, or when periodicities or other
relationships between objects are to be found.

1t is difficult to apply these parallel methods to general purpose computing, where
tasks are generally quite varied and non-repetitive. But for image analysis, as for a few
other problems such as some simulations, the application of parallelism is more direct
and the results easier to achieve. For the particular case of image processing (to be more
fully defined shortly), there are two other "parallel” cases that can be mentioned.

First is the array processor (distinct from the processor array). This is a special
purpose arithmetic unit that works under the direction of the central processing unit
(usually a conventional sequential computer) to carry out particular repetitive tasks at very
high speed. It is often used for images, because the data can be sent to the array
processor as a sequence of values (for instance, the brightnesses along lines in the image)
to perform simple operations like addition, multiplication, subtraction, etc. and the results
written back to memory. The specialized nature of the array processor and the low level
of its operations allows it to be much faster than the main general purpose processor for
this purpose. However, the array processor is rather inflexible and hard to program for
any but the simplest operations. While it can speed up some image operations, it is
inapplicable to many others.

Another rather new development is the use of so-called neural nets within the image
sensor itself. This corresponds in a very simplified way to the operation of the human
visual system (which we will encounter in the final chapter), in which there are many
additional cells connected to the outputs of each few retinal receptors to compare and
combine their responses to light in ways that extract specific information (such as the
location, orientation and motion of edges), so that only the reduced data is sent on 1o the
brain. This allows the human to respond very quickly to particular types of stimuli, and
using electrical devices to form the same types of connections in the image sensor can
also produce simple computerized devices that recognize and respond to certain features.

Both of these types of devices are rather specialized for our needs in general image
analysis and measurement, although it is quite possible that applications research using a
flexible general purpose system on a particular problem will result in a design that
successfully applies these tools to individual situations.



