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PREFACE

This book covers a broad range of seepage and groundwater problems.
It describes the physies of water flow through porous media and soil physical
problems associated with that flow. In addition, the book discusses important
practical problems of groundwater and illustrates different methods for solving
those problems. Among the problems covered are: control of shallow water
tables, seepage under dams and other hydraulic structures, flow to wells,
evaluation of aquifer tests, construction and maintenance of wells, and
exploration for groundwater.

During the past few years, several books have been published in the
broad field of groundwater hydrology. These books are concerned tc a large
extent with water-quality problems associated with groundwater and do not
treat the wide variety of problems that we have dealt with in our book. They
do not emphasize methods of obtaining solutions to groundwater problems to
the same extent that we do, nor do they emphasize the engineering design
of groundwater management devices. The writing of a book with such an
emphasis was motivated by the authors' teaching of seepage, drainage, and
groundwater courses at the University of California at Davis to undergraduate
and graduate students that have widely varying backgrounds and interests.
Chapters 1 through 6 were written by J. N. Luthin, and Chapters 7 through
12 were written by M. A, Marifio.

This book is designed for use an as undergraduate text in groundwater
and seepage courses in civil engineering, agricultural engineering, hydrology,
and soil and water science curricula, but it can also be used as a text in
introduetory seepage-and-drainage and groundwater courses at the graduate
level. This book should be useful also to practicing engineers, hydrologists,

and agriculturalists in the area of groundwater and seepage problems.
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We are indebted to the Department of Civil Engineering at the University
of California, Davis, for the assistance provided in the typing of the manuseript.
Both the Department of Civil Engineering and the Department of Land, Air
and Water Resources at U.C. Davis have assisted us, directly or indireetly,

in the preparation of this book. 7To these and to Irma, Raquel, and Ad we
are indebted.

Miguel A. Marifio
James N. Luthin
Davis, California
November, 1980
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UNITS AND CONVERSIONS

Length
1 inch (in) = 0.08333 feet (ft) = 0.02540 meters (m)
= 2.540 centimeters (cm) = 254 millimeters (mm)
1 foot (ft) = 12 in = 0.3048 m = 0.3333 yards (yd)
1 mile (mi) = 5280 ft = 1609 m = 1.609 kilometers (km)

Area
1 inch? = 6.452 em? = 64516 mm>
1 foot? = 0.0929 m> = 929 cm’
1 acre = 43560 ft° = 4047 m? = 0.4047 hectare (ha) = 0.004047 km>
1 mile? = 640 acres = 2.590 km>
Volume
1 inch® = 16.387 em® = 1639 x 1072 liter ()
= 4.326 x 107 U.S. gallons (gal)
1 foot® = 2.832 x 1072 m® = 7.477 U.S. gal = 28.320 1

= 2.995 x 107 acre-feet

3 3 9 3

1 mile™ = 4.167 km® = 4.167 x 10 m" = 3.378 x 106 acre-feet

Mass

1 pound (Ib) = 453.59 grams (g) = 4.536 x 107! kilograms (kg)

Pressure
1 pound/in2 (lb/in2 or psi) = 6.895 x 10 newton/m2 (N/mz)

= 0.0703 kg(for'ce)/cm2 (kgf/cm2) = 0.0680 atmosphere (atm)
I atm = 1013 bar = 1.013 x 10° N/m? = 1.033 kgf/em? = 14.70 psi

3

Velocity and hydraulic eonductivity

1 foot/second (ft/s) = 0.3048 m/s = 26.3347 x 103 m/day
= 43.1902 x 10° inches/hour (in/hr)
= 645.7627 x 10° U.S. gal/day/ft? (gpd/sq ft)

1 U.S. gral/day/ft2 = 4,078 x 1072 m/day = 4.720 x 1077 m/s



VIII

Transmissivity

1 ft2/s = 9.290 x 1072 m2/s = 802.656 x 107 m2/day

= 86400 ft’/day = 6461.3808 U.S. gal/day/ft (gpd/ft)
1 U.S. gal/day/ft = 1.242 x 1072 m?/day = 1438 x 10" mZ/s

Discharge

1 £t3/s (efs) = 0.02832 m°/s = 28.32 I/s = 2446.848 m°/day

= 448.874 U.S. gal/min (gpm) = 6.464 x 10° U.S. gal/day (gpd)
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CHAPTER 1

POROUS MEDIA - SOIL

The porous media that contains groundwater is a three-phase system.
It consists of a solid phase (soils), a gaseous phase (air) and a liquid phase
(water). The solid phase may consist of consolidated rocks such as limestone,
granite, lava and schists. It may be semiconsolidated materials such as
sandstones and shales or it may be unconsolidated alluvial deposits and soils
formed in place by weathering processes.

11 THE SOLID PHASE

The pores in consolidated rocks such as granite are due to fissures and cracks
in the rock. In limestone, water often moves through solution channels. In
lava, there are gas channels, eracks and unconsolidated sediments that transmit
the water. Because of the irregular nature of the pores in these rocks, a
successful method of analysis has not been developed. The pores, cracks
and interstices oceur in a complex fashion and are not always interconnnected.
Experience with local conditions forms the best basis for judgement in
evaluating seepage through this material.

On the other hand, the pores in sandstones, schists, unconsolidated
sediments and soils are more or less interconnected. The physical basis for
the flow of water through these materials is well understood. These materials
form the bulk of the groundwater areas.

11J.A Soils and Unconsolidated Sediments

The solid phase of soils and unconsolidated sediments consist of

individual particles of various sizes. These particles are classified according
to their sizes as cobbles, gravel, sand, silt and clay. Cobbles have an average
diameter greater than 76 mm. Gravel sizes range from 4.75 mm to 76 mm.
Sands are 0.074 mm to 4.75 mm in diameter. Silt is 5 to 50 microns and

clay is less than 5 microns (5 x 10 meters).




