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Preface

This book is about electrostatics, magnetostatics, and the electro-
magnetic field. I hope that it will be of use to students of theoretical

* physics, whether they be physicists or mathematicians, and I have
concentrated on building up the mathematical structure in as concise
a manner as possible,

The appeal to experimental facts has been made in the beginning
and consists only of a recital of the conventional essentials. In this
respect I must ask the reader to tolerate the break from a certain
tradition, viz. the usual accounts of the “fur-ebonite-lodestone”
experiments of, the Ancient Greeks and their later medieval pupils.

- It is important for the reader to have some knowledge of vector
field theory, certain theorems in complex function theory, and the
- concept of a tcusor and its matrix representation. The n
 theorems are collected in review in the appropriate chapters, but are

~ - not otherwise discussed.

I have again offered solutions to a large number of typical problems
which have been carefully selected from examination papers set in the
universitics of Cambridge, Oxford and London. I would like to
express my gratitude to these authorities for permission to publish the
examination questions: the solutions are my own responsibility.

I would also like to express my appreciation of the many valuable
suggestions made by Dr. C. W. Kilminster, who was kind enough to
read the book in manuscript.

Finally I would like to thank the publishers for their constant
encouragement during the writing of this book.

Jan. 1962 co -.-‘ R. H. Atkin
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CHAPTER 1

The Foundations of Electrostatics

1.1 Seome preliminary ideas

The object of our study in the following chapters is the “world of
electricity and magnetism”, as discovered by experiment and as made
systematic and aesthetic by the language and techniques of mathematics.

In the first instance we assume the existence of a world defined by the
electric charge and the electric field. This is comparable with the
material world which is defined (to some extent at least) by the gravita-
tional matter and the gravitational field. Thus we agree to say that it is
experimentally possible to obtain material bodies possessing the
additional property of being electrically charged; the electric charge is
a scalar quantity, occurring as either positive charge or as negative
charge; these charged bodies exert forces (line vectors) of attraction/
repulsion upon each other according to the formula “like charges repel,
unlike charges attract”; these electric charges therefore generate an
electric field vector at all points of space (in vacuo). Furthermore,
under the title of Electrostatics, we are only concerned with charges
which are in equilibrium under the action of their mutual field.

Notice that we are saying that material bodies possess charge; we
are not thinking of “pieces of charge” in the same way as we think
of pieces of metal. Ideas which are concerned with chasing the electric
charge until it exists (experimentally) independently of matter auto-
matically lead uvs to Atomic Physics. If the reader finds it helpful then
we can remark that the basic unit of negative electricity appears to be
what is called an electron and this is associated in the atom with an equal
(numerically) positive charge in the shape of a proton. Thus Atomic
Physics has taken (e.g.) the hydrogen atom, which in its normal state
gives the appearance of being electrically neutral, and separated it into
two energy components (the electron and the proton) each of which
exhibits the symptoms of electric charge. From our point of view,
which is a macroscopic vig idea which we need to borrow
from atomic physics is thef RSl $1f ; ally neutral but that they can
be made to exhibit a pogitive and a g electrical charge.

We shall use the Jettar e chaigdand this is assumed to be
positive unless expHcitl %@d g - be dthegwise. The electric field
vector will be denofed by E;'$oQh Il body carrying a small
intg a_:;.'}g"??w!;’;te # O it will experience a

PR 3 A I

i)

=f %

..(1)



2 THEORETICAL ELECTROMAGNETISM

Thus E is taken as the force experienced by a unit positive charge at the
point in question. Of course E is a vector point function and should
perhaps be written as E(r). This is why we speak of a small charged .
“body in the field—to ensure that E(r) has a constant value at all points
of the body. This is patently not possible for macroscopic bodies so
that equation (1) is already a convenient mathematical device. To
emphasise the conditions under which (1) is true we shall commonly
refer to & point-charge e instead of using the words “small charged body”.
We shall also have occasion to regard e itself as a scalar point function
e(r), but in this case we shall speak of charge density p(r) per unit volume,
or ofr) per unit area. When we use the notation o(r) for the charge
density per unit area we shall obviously be referring to a charged
surface and so we speak of the surface charge density o(r).

It is often said that there is an analytical difficulty in the use of
scalar point functions p(r) and o(r) since they cannot be continuous—
appeal being made to the discrete nature of charges in the form of
electrons and protons. In the author’s view this is greatly over-esti-
mated, the following points being regularly overlooked:

(i) even assuming p(r) is not continuous it does not involve difficulties
in integration (the common problem) provided it is defined and bounded
in the region of integration.

(if) if in fact p(r) is really the charge function due to the presence of
electrons or protons then, since we have borrowed from atomic physics
so far, why not borrow some more and say that the charge density can
be represented by the value of |p(r)[* where y(r) is the scalar wave
function of Quantum Mechanics; of course y(r) is continuous.*

Conductors and insulators

For the purposes of Electrostatics we assume that substances can be
divided into the above two classes.

If a charge is inside (or on) a conductor then the application of a
field E causes the charge to move freely; there is no restriction on the
movement of the charge. ‘

The above sentence defines the class of conductors.

A substance is an insulator if it is not a conductor; the class of
insulators is the complement of the class of conductors.

In practice it is better to think df\good conductors and bad con-
ductors rather than conduct_ofs{;ﬁd ifisulators since the difference in the
laboratoryisreally one of degree. “Our definitions constitute an attempt
to divide all substances into the two idealized types, viz. perfect
conduectors or perfect non-conductors. 'We.must emphasize that this is
acceptable in the study of Electrostatics but is not appropriate for
Electrodynamics (Ch. III et seq.).

] ‘(S)ee the author’s book ““Mathematics and Wave Mechanics™ for a full discussion
ox Y(r).



THE FOUNDATIONS OF ELECTROSTATICS 3

The material of an insulator is called a dielectric material, and whea
an electric field is applied to such a substance we agree to say that
the positive and negative charges which compose the neutral atoms
separate very slightly under the action of the field. A state of internal
stress therefore appears; we call the process polarisation.

In the case of a conductor the picture is very different. The appli-
cation of an electric field causes the complete separation of positive and
negative atomic charges so that all the positive charge moves to one
end of the body and all the negative to the other end. This process
is called induction and commonly appears if a charged body is brought
near to an insulated conductor.* ‘

Finally we need to acknowledge the following experimental facts:

In Electrostatics (charge is in equilibrium) we find

(D) if p(r) = 0 inside a hollow conductor then E = O at all points
inside,

(ii) there is no free electric charge inside the substance of a con-

- ductor.

From the definition of a conductor, and from (2), it follows that
all the charge resides on the surface of a conductor, and the field vector
E is normal to the surface of a charged conductor—if E had a tangential
component the charge would move,

Returning to the idea of the general electric field defined by the line
vector E(r) we must regard it as fundamental that E(r) defines a
conservative field.t Thus we can say immediately that a scalar point
function V1(r) exists at all points where E exists and is given by

E= —grad V
or E=-VV )

Since ¥(r) must be differentiable at all points where E is defined then
¥V possesses the additional property

@

(1) is continuous PN )]

1.2 The mathematical framework

It will be necessary to assume an acquaintance on the part of the
reader with the basic formulae of Vector Field Theory. These ideas
are developed in the author’s “Mathematics and Wave Mechanics”
(abbreviated for future reference to “M and WM”) while the role of

. Thes reader who l(s int)emsted in the practical experimental details of electrostatic
ch;lxﬁs ould study (e.g) A. S. Ramsey, “Electricity and Magnetism” which gives
a full account of the behaviour of the ely t,:xiyw e ¥

TSee.theanthor'sbook(hssicalDynamics(Ch. I0) for a full dis¢ussion of
conservative field,



4 THEORETICAL ELECTROMAGNETISM

vector algebra and tensors will be found in “Classical Dynamics”
(abbreviated to “CD”).

For reference we shall find it valuable to compile the following list
of formulae and theorems.

If V(r) is a differentiable scalar point function its increment con-
sequent upon r changing to r 4 dr is given by

dV = (grad V). dr

the dot signifying scalar product. Using the nabla operator V we can
write

dv = (VV).dr B 1))
where VV=a—Vel—|—a—V;e,+ﬂ/—e, N ()]
0%, 0x, 0xg

if r=xe; 1 x,e; + x3e; and (e,e,e;) being an orthonormal triad
of reference. When we use (x, y, z) in place of (x,x,x,) it is usual to
write (i, §, k) in place of (e,, e,, e;). Thus with respect to (i, f, k) the
operator V becomes
voil 1 j9 40 )
ox dy 0z

If F(r) is a vector point function with differentiable components we
define the divergence and curl of F by '

divF=V.F T cee(d)
curl F=V x F )
With respect to the usual (I, j, k) these become
) oX 0Y oz
and cullF=|i [ &
' 0 9 0
X Y Z
0Z 0dY X o0Z oY dX
e (2 2) (X i) (o 20,
or «ur dy 0z + oz Ox i+ ox Oy @

From (2) and (6) it follows that
divgrad V=V (VV) = ViV

&v v Vv
V’ f— —— — s e
20 Vewty T ©

A



THE FOUNDATIONS OF ELECTROSTATICS 5
We shall require the theorems of Gauss and of Stokes, viz.,

Gauss’ Theorem

Given a closed surface S enclosing a volume Q of space, and a vector
point function F(r), then

fdiﬂdﬂ:fr.as ....(10)
Q S

where dS means n dS, n being the unit vector in the direction of the
outward normal to § at dS.

Stokes’ Theorem

Given a closed curve C spanned by a surface S, and a vector point
Jfunction defined at all points of S, and possessing continuous first order
derivatives, then

J;(cmlF).dS=E£cF.ds (1D

where ds means ¢ ds, ¢ being the unit vector in the direction of the tangent
to C and ds the element of arc of C.

Curvilinear co-ordinates. When the co-ordinate system remains
orthogonal but the metric* takes the more general form of

ds® = kY dul + F du} + B3 du? (12

the components of div, grad and curl become altered according to the
following scheme.

1 g 14 19
gradf=Vf=h—15‘{-1e1+E£eg+}—l;-3£e3 ceee(13)

) 1 d -0 d
div F = o (o (hhoE) + i, () + 55 ()

.. (14)
where F = Fie, + Fie, + Fye,
Also curl F= —L he; hee, hge,
17%27%8
9 9 3 ... (15)

hiFy heFy  hyFy
* See M and WM, Ch. VII.
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Combining (13) and (14) we get

VY = Zi:;h: {ail (h;f’ aa:{,) o (hah aif ) o, (h'l:z azf) ’

....(16)
The following identities can be easily verified from the above definitions
divcurl F=0 forall F (1D
cutlgrad V=0  forall V ....(18)
curl curl F = grad divF — V2 F ....(19)

where VF = (g:)f + == (2.9 >+ aa’)f )i + similar expressions
ie. VEF = (VX)i 4 (V'y)] + (V*2)k .+ +.(20)

In particular, using cylindrical polar coordinates (r, 0, z) with metric
ds? = dr® 4 r3d08 4 dz*

. 1 1 ﬂ a‘f
(16) gives V’f- ror ( 3r) r’30’ o o@D
and in two dimensions (r, 0) this reduces to
_lo (o) 1%
vi= rar( ar) A2 @

When using spherical polar coordinates (7, 6, ¢) with metric

dst = drt 4 8t + PAsint 0 dg?
(16) gives
_198 (.9 1 o 1o
V’f“rza ( )+r’sm080 (sm )+ r’sm’ﬂacﬁ’

andwhen f isindependent of ¢ (i.e. the axis 0 0isanaxis of symmetry)

this becomes
_Lo(a8), 1 2)
V’f—r’ar(r’ar)+r'sxn030( sinb% @
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1.3 The Jaws of Gauss and of Coulomb
Coulombt’s Law is really the inverse-square law: two point charges

. ; 66 .
e, and ¢, a distance r apart repel each other with a force ~% in vacuo.

Thus, the law states that the electric field vector due to a charge

+e at the origin is (v. Fig. 1)
E=%y ()
T3

Such a law involves the concept of “action at a distance” and if it is
thought desirable to avoid this then we must have recourse to Gauss’
Law, viz.

If S is a closed surface enclosing a total
charge e then the total outward flux of E /(E

over S equals 4me, that is to say 4

J’E.dS=4qre ....(2)
]

Now cither (1) or (2) may be taken as  *€
the starting point of electrostatics, Gauss’ o)
Law being preferable since it does not Fig. 1
involve the idea of action at a distance;
we may imagine the effect of the charge e spreading outwards through
space by slowly increasing S in size and shape.

Example 1.  To deduce Coulomb’s Law from Gauss’ Law. Using Fig.
1, imagine a sphere S, centre 0 and radians 7. Then by symmetry
E will be a function of r only and therefore a constant at all points

Pof S. Applying (2) we get
fE.dS:E.Mn’-—#ne
5
so that E = -'% as required.

Example 2. To deduce Gauss’ Law from Coulomb’s Law. Let S be
any surface completely enclosing a point charge e at the origin 0.
Then the total outward flux over § will be '

| fE.dS= flr.ds=ef —v(l).as
- Jg s P 8 r.
=,jdw
£

where dow is the solid angle subtended at 0 by the element of area &S.*
Hence, since the total solid angle at a point is 4, the result follows.

* See M and WM, p. 170.
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The electric potential function ¥(r) due to a point-charge e at the
origin now follows from (1).

We have E=I§r=—VV

1 1
and since A% (-) =T We deduce
r r

V(r)=§ ..03)

If the surface § becomes one which encloses a charge distribution
p(r) throughout a volume Q then Gauss’ Law becomes

LE.dS:%fp(r)dQ (@

and the potential at a point P outside Q becomes
V(P) =f A0 40 5
QT

where r is measured from P to dQ.

If P is inside  the integrand becomes infinite although we can show
that the integral converges. Thus we regard Q as composed of Q
and Q, where (), contains P as an interior point and is enclosed by a
simple surface . Also p(r) must be regarded as defined and bounded
at all points of Q; nor is there any loss of generality in taking p to
be positive at all points of Q. ‘

Now let X be entirely contained between the concentric spheres,
centre P, of radiigand b (b > a); let p = py,inr <aand p < pyin
r £b. Then we need to show that

im | £d0=o0 ....(6)
Qo JO; 1
Writing F=| 240
2 7
a 1 b 1
we have 477p1f ot rrdr<F< 411'p2f = rtdr
0 0
that is, 2mp; . a® < F < 2mpy . b

As a, b — 0 equation (6) follows.

Units, Coulomb’s Law (1) enables us to define the electrostatic
unit of charge (e.s.u.) as the commeon value of ¢, and e; whenr = 1 cm.
and the force is 1 dyne. Similarly the e.s.u. of potential difference is
such that 1 erg of energy is required to move 1 ¢.s.u. of charge through
that difference.
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These units are not however the practical units which are as follows: .
1 coulomb = 3 x 10? e.s.u. of charge

1 volt = L es.u. of p.d.
300

1.4 Field equations

If we apply Gauss’ Theorem of 1.2(10) to Gauss’ Law of 1.3(4)
we get, for all surfaces S, :

_f E.dS:’f-divEdQ:hfp(r)dQ
8 Q

i.e. for all (2, f ({ivE — 47p)dQ =0
a )
Hence at all points of space
div E = 4mp ()
This, together with = —Vy )

constitute the electrostatic field equations, being true at all points of the
field—with the proviso that, so far, we have not taken any account of
the effect of the medium.

Combining (1) and (2) we obtain Poisson’s equation

V2V = —dzp . (3)
and at all points at which p = 0 this becomes Laplace’s equation
ViV =0 ...(®

These equations (3) and (4), particularly the latter, contain the
solution of a large range of electrostatic problems in one, two and three
dimensions. Many of these problems consist of charged conductors
in vacuo (or in a medium of simple isotropic electrical properties) and
the information at our disposal amounts to knowledge of the boundary

properties, e.g. the values of ¥ and of %’f over a specified surface. The

method of solution in such cases consists of finding that solution of (4)
which fits the appropriate boundary conditions. We shall investigate
this general method of attack in the next chapter.

15 Lines of force and equipotential surfaces

A curvein space, I, is a line of force if its tangent definesthedirection
of E at every point of itself. Thus the equations of I" are given by

solving
— === ..u(1)

E, E, K
where E = Eji + E;j + E,k.
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If the lines of force arc drawn through every peripheral point of a
small area AS they can be regarded as all parallel and perpendicular to
AS. We thus have what Faraday called a tube of force (Fig. 2). If
§; and S, are areas of two cross sections of the same tube of force and

G
S

Fig. 2

E, and E, the electric intensities at these sections, then applying Gauss’
Law to this section we get

f E.dS=0
8

or, the “strength” of the tube ES is constant.

A line of force naturally passes from positive tharge lo negative
charge (v. Fig. 1) since E leaves the one and arrives at the other. Thus
a positive point charge free to move in space must travel along the lines
of force. Of course there is likely to be a distortion of these lines due
to the presence of the point charge itself.

An equipotential surface is one whose points are all at the same
potential. Thus if V(x, y, z) denotes the potential function in some
region of space the equipotential surfaces will have equations

Vix,y,z)=4 (2

where A is a parameter. If P(x,, z) lies on (2) then V(P) = 4. As
4 changes (2) generates a whole family of equipotential surfaces—of
course the separate potentials are different. Equation 1.3(3) shows that
the equipotentials in the space occupied by a point charge at the origin
are given by

r=, )

i.e. a set of concentric spheres.
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Now (2) shows that for displacements dr in the surface itself (2
remains constant) we get

dV = (VV).dr =0
which is E.dr=0 RN ()]

Equation (4) shows that the lines of force are everywhere orthogonal to
the equipotential surfaces. Hence the lines of force form a set of curves
{T'} which are orthogonal to the equipotential family {A}. -

It follows from this that a conductor must always be an equipotential
surface in an electrostatic field.

The following result is now important.

The condition for a family of surfaces {F} to be an equipotential
Jamily {A}.

Let {#} be defined by 4

fxp3,2)=24 N ()]

where Ais a parameter. We require to find the condition which must be
satisfied before we can say that {#} can be an equipotential family in
some hypothetical electrostatic system. We must suppose therefore
that the hypothetical potential function V(x, y, z) will be a function of 4,
that is, we can write ¥ = g(4) where g(4) is a single-valued, continuous
and differentiable function of 2. Since we require that V2V = 0, we
have

v oA

9 e o2t

ox &1 )ax
*v (az)* A
d 2 — o 9r , gA
an 7 g'w ax “*'3(11)‘%‘2

and so we fequire gA{V + gV =0
*

Using (5) this gives Vi _ gD

g
ie. VY 4 {log [g'(M]} 6
—T ' e

2
which is the condition. The essential point in (6) is that ——Y-I—-,
shall be a function of 4 (only). (grad f)
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Example 1. Can the set of concentric spheres r = 1 be an equipotential
family ?

e p of x
Writing f== r = A we have 5= = -
so that vi=%i+Zj+Zk
r r r
2 2
and ip=Xtrtz
rﬂ
1 x* 1y 1 2 2

d al Vf=~ - o o= s

and aiso f r r3+r r3+r B
Vi 2 2 .
Hence Wfﬁ == I = a function of A
Also the potential function in this case will be ¥V = g(%)
d 2

h ——={logg'(A)} ==
where 7; losg'@} ==
that is log g'(A) = —2log A + constant
which gives g@@) =ai™® (a= constant)
and so V=g(i)=ii+B

r

where 4 and B are constants. This of course is a result we expected.
The next result will be found very useful.

Example 2. Can the family of confocal ellipsoids
2 2
x y z
=1
a*+1+b2+/1+c2+1

be an equipotential family ?
To avoid the differentiation becoming too involved we shall adopt
the notation
1 1 1
P=
a2+ﬂ.+b2+1+c’+ﬂ.
x* y z

=@ e @

and 0.



