PGy - =

b R A e A ik’ s L macesaaditatill

Introduction to
Compiling
Techniques

A First Course using
ANSI C, LEX and YACC.

Introduction to
Compiling
Techniques

A First Course using
ANSI C, LEX and YACC

J.P. Bennett

Lecturer in Computing, School of Mathematical Sciences, Bath University

McGRAW-EILL BOOE COMPANY

London - New York - St Lowis - San Francisco - Auckland - Bogota - Guatemala
Hamburg Lishon - Madrid - Mexice - Montreal - New Delhi
Pansta - Paris © 52 Juan - S3o Paule - Singapore - Sydney - Tokyo - Toronto

Published by

McGRAW-HILL Book Company (UK) Limited
Shoppenhangers Road

Maidenhead, Berkshire, England SL6 2QL
Telephone Maidenhead 0628 23432

. Fax 0628 35895

British Library Cataloguing in Publication Data
Bennett, J.P. (Jeremy Peter), /1960~
Introduction to compiling techniques: a first course using ANSI C, LEX and
YACC
1. Computer systems. Compilers. Writing
I. Title
005.4'53

ISBN 0-07-707215-4

Library of Congress Cataloging-in-Publication Data
Bennett, J.P. (Jeremy Peter), 1960.
Introduction to compiling techniques: a first course using ANSI C, LEX and
YACC J.P. Bennett.
p. cm.
Includes bibliographical references.
ISBN 0-07-707215-4 .
1. Compiling (Electronic computers) I. Title.
QA76.76.C65B46 1990
005.4'53--dc20 ~ 89-37070

Copyright © 1930 McGraw-Hill Bock Company (UK) Lid. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission
of McGraw-Hill Book Company (UK) Limited. ' '

1234 1P 9210

Typeset by Vision Typesetting, Manchester
Printed and bound in Great Britain by Information Press Ltd, Oxford

81

/S -s00

LA

ALY

)

P

Preface

There are now several excellent comprehensive texts on compiling on the market.
The problem with all these books is that they are very large and detailed. The
present work is at a lower level and gives an introduction to compilers and their
construction.

This book is aimed at two audiences. The first is the second- or third-year
Ronours undergraduate in computer science taking a first course in compiling
techniques. The second is the working programmer, who although not having
formal qualifications int computer science needs to use compiler technology in his
or her work. To this end a balance is maintained between providing enough
theoretical background to enable a clear understanding of the subject and giving
a practical presentation that will both illustrate concepts and allow the reader to
develop effective compilers.

A certain amount of knowiedge is assumed on the part of the reader.
Familiarity with C is essential. Throughout we have used ANSI standard C, but
this is readily comprehensible to anyone mare familiar with K&R C. A general
familiarity with machine language is required at the level that would be taught in
any introductory computing course.

Atits heart compilation is based on a few very elegant algorithms. This book is
short enough to allow the reader to see the elegance of the subject without being
frustrated by obscure detail. The main parsing, translation, and code generation
techniques in use today are presented with many diagrams and examples.,
Methods that are no longer of importance are either omitted or only presented to
the extent that they help the understanding of modern practice.

Examgples throughout are presented using the C programming language. The
section on compiler generators uses the LEX scanner generator and YACC
parser generator, highlighting the modern emphasis on tools. These are widely
available under Unix with similar programs being available under other
operating systems. This is far and away the commonest teaching and develop-
ment environment today, making the practical examples directly available to a
wide audience. The book culminates with the presentation of ajcompiler for a

N

by PREFACE

simple programming language, VSL. Compilation is for a simple abstract
machine, VAM, which has many of the properties of modern microprocessors,
Exercises are suggested at the end of each chapter. Some of these are practical
programming problems to help the student understand the workings of practical
compilers. Others are essay subjects and questions suitable for exam revision.
Finally there are discussion topics, which lead beyond the level of this book into
more advanced areas of computation. A brief reading list at the end of each
chapter provides initial assistance in further developing the ideas introduced.
I am indebted to my colleagues in the School of Mathematical Sciences at Bath
University for their assistance. In particular Dr Dan Richardson provided much
perceptive criticism of the manuscript. Undergraduates on his language theory
course used the first draft as their textbook in the spring of 1989 and suggested
many improver_.ats which I have adopted. Mr Richard Nuttall of Torch
Computers made many helpful suggestions on improving the text from the
perspective of an industrial programmer. Finally I must express my gratitude to
the anonymous reviewer from McGraw-Hill who gave the manuscript a very

thorough analysis, making many perceptive suggestions that have greatly
improved the text.

» J. P. Bennett

- Contents

Preface

1. What is a compiler?

The need for machine translation
The structure of a compiler

1.3 A demonstration compiler
Exercises
Further reading

2. Target languages

2.1 Types of target machine
2.2 Implementation methods
Exercises
Further reading

3. Formal grammars

3.1 Defining the structure of a language
3.2 Properties of grammars
3.3 Syntax-directed translation
Exercises
Further reading

4. Intermediate representations

4.1 Types of intermediate representations
4.2 Abstract machines

Exercises

Further reading

ix

10
11
12

13

13
16
26
26

29
35

43

45

45

58
58 +-
59

10.

Lexical analysis

5.1 Why have a separate lexical analyser?

5.2 Ad hoc lexical analysers

5.3 Lexical analysis with finjte state machines
Exercises
Further reading

Syntax analysis methods

6.1 Approaches to parsing
6.2 Top-down parsing methods
6.3 Bottom-up parsing
Exercises
Further reading

Error handling

7.1 Compile-time error handling
7.2 Run-time errors

Exercises

Further reading

Parser generators

8.1 - YACC
8.2 YACC and ambiguous grammars
8.3 Type consistency in YACC
8.4 Error handling
Exercises
Further reading

- Semantic checking

9.1 Type checking

9.2 Other semantic checks
Exercises
Further reading

Code generation

10.1 Declarations and storage allocation
10.2 Expressions and assignment
10.3 Flow of control

Exercises

Further reading

CONTENTS
69
50
66
69

76
77

78

78
80
92
110
i1

12

113
115
116
116

117

117
120
125
126
127
128

129

129
136
136
137

138

139
142
145
149
150

CONTENTS vii

11. Code optimization ‘ 151
11.1 Basic blocks 151

11.2 Loop optimizations 160

11.3 Register optimization 165

11.4 Other optimizations 166
Exercises 169

Further reading 170

12. A complete-compiler for VSL ‘ 171
12.1 The VC compiler for VSL 171

12.2 Description of the compiler 172

12.3 Building the compiler 223

12.4 Running the compiler 224

~ Exercises 228
Appendix. VSL, VAM, and VAS 230
A.1 The grammar of VSL 230

A.2 The VSL Abstract Machine 231

A.3 A mnemonic assembler for VAM 233

Index 234

1

What is a compiler?

A compiler is a translator from a program written in one language, the source
language, to an equivalent program in a second language, the target or object
language (Fig. 1.1). Typically the source language will be a programming
language such as FORTRAN, Pascal, or C, and the target language will be
machine code for the computer being used, which is hence known as the target
machine. The compiler will usually supply error and diagnostic information
about the source program being compiled.

1.1 The need for machine translation

The earliest machines were very small and simple. For example, the Manchester
Mark 1 produced in 1948 had only seven opcodes and 32 words of main memory.
For such a computer, entering programs as sequences of binary digits at a
keyboard was not that difficult. However, it was convenient when writing down
such programs not to use the sequence of binary digits, but a shorthand notation
for the opcodes. Table 1.1 shows some of the early mnemonics for opcodes used

with this computer.
Errors and
diagnostics

Program in
source
language

Compiler

Figure 1.1 Overall structure of a compiler

2 INTRODUCTION TO COMPILING TECHNIQUES

Table 1.1 Assembler mnemonics for the Manchester Mark 1

Binary
opcode Mnemonic Meaning
011 a,S Store the contents of the accumulator at address S
. 100 a-s,A Subtract the value at location S from the accumulator
111 Stop Stop and await operator action

With more complex machines and longer programs, hand translation of
mnemonics into binary for entry into the computer became tedious. In the late
1940s it was pointed out that this translation could perfectly well be done by the
computer itself. Programs to do this were known as assembliers, and the
mnemonic codes as assembly languages. '

Because of their simplicity, being essentially a one-to-one mapping from
mnemonic to machine opcode, assembly language programs are very verbose.
More complex languages, known as autocodes, were developed to describe
programs more concisely. Each autocode instruction could represent several
machine code operations. Programs to translate these high-level languages into
machine code were more complex than assemblers and became known as
compilers.

During the 1950s high-level computer languages evolved to describe problems
independently of the machine code of any particular computer. Early languages
such as FORTRAN and the autocodes from which it was derived were strongly
influenced by the available operations in the underlying machine code. For
example, FORTRAN IV had a restriction of 3 on the number of dimensions of an
array partly because its original target machine, the IBM 709, had only three
registers for indexing arrays. Even C, designed in the mid-1970s, has some
constructs (e.g. the increment operator ++) because of the availability of an
equivalent opcode on the original target machine, a PDP-11.

Algol 60, which was actually proposed in 1958, heralded a new approach to
high-level languages. It was designed with problem solving in mind, and
questions of how it might ever be translated to be run on real machines ignored.
For example, it allowed local variables and recursive routine calls. How were
these to be translated to run on machines with a single address space and just a
jump to subroutine opcode? Most modern computer languages since, such as
Pascal, Modula 2, and Ada, have also been designed to be independent of any
particular target architecture. '-

Compiled high-level languages are now well established. Advantages are their
conciseness which improves programmer productivity, semantic restrictions
(such as type checking) to reduce logical errors, and ease of debugging.
Disadvantages are their speed (typically 2-10 times slower than hand-written
assembler) and size, both of the compilers and the compiled code.

Compiler theory has developed to enable languages such as these to be
translated without difficrity. Many tools have been developed to automate much

WHAT IS A COMPILER? 3

of the process. While the first FORTRAN compiler took 18 man years of effort to
construct, it is now perfectly feasible for an undergraduate to write a snmple
compiler for Pascal in a term.

1.1.1 APPROACHES TO MACHINE TRANSLATION !

There are two ways of running a program written in a high-level language on a
computer. The first is to translate the program into an equivalent program in the
machine code of the computer. This is the process of compilation described irrthe -
previous section.

The second approach is to write a program that can interpret the statements of
the high-level language program as they are encountered and carry ddt their
actions. Such programs are called interpreters.

Compilation has the advantage that we have to analyse and translate our high-
level language program only once, although this may be a time-consuming
process. Thereafter we just run the equivalent machine code program produced
by the compiier. A disadvantage is that if our program goes wrong we will get an
error in the machine code program and must try and work back from this to find
the corresponding error in the high-level language program.

Interpretation is much slower than compilation, since we must analyse each
high-level language statement to determine its meaning each time we encounter
it. However, if there is an error we are still dealing with the original high-level
language program and can immediately pinpoint its source. This is often a great
help when developing and debugging programs.

These two approaches are the extremes, and many machine translators are a
bit of both. A common approach is to compile the high-level language not into
the machine code of the target machine, but into a lower-level intermediate code
which is then interpreted. This intermediate code is chosen to be easy to compile
into and efficient to execute, so we end up with a system where compilation is not
too time consuming, programs run reasonably fast, and if there is an error we see
it in an intermediate code that is easier to relate to the source language than
machine code. Compiler/interpreters like this have been written for many
languages. A good example is the UCSD Pascal compiler, which gener .tes an
intermediate code, PCODE, for interpretation.

The choice of whether to compile or interpret is to a large extent influenced by
the nature of the high-level language and the environment in which it is used.
FORTRAN is relatively simple, designed for translation to machine code, and
often used for solving big numerical problems on mainframe computers, where
speed of execution is essential. It is thus invariably compiled. BASIC, on the other
hand, is mainly used on personal microcomputers where clear error handling is
important, and where lack of processing power and memory could make
compilation very difficuit. It is invariably interpreted, although modern interpre-
ters often do an element of compilation, anaiysing keywords as the program
is typed in. LISP is a language that often uses both interpretation and
compilation. Pregrams are interpreted during program development to avoid

4 INTRODUCTION TO COMPILING TECHNIQUES

time-consuming compilations each time the program is changed and to give clear
error handling, and then compiled when development is complete.

Although this book is essentially concerned with the techniques involved in
compilation, much of the information is of use in writing interpreters. Analysis of
the source code is much the same in both cases and finding the most efficient way
of interpreting a particular construct is not dissimilar to finding the best code for
a compiler to generate.

1.1.2 THE WIDER USE OF COMPILERS

By far the commonest use of compitation techniques is in the translation of high-
level programming languages into machine code for execution on a target
machine. However, these techniques have relevance throughout software
engineering. Source languages need not be programming languages, but may be
word-processing languages, natural languages such as English, or special
languages to describe the layout of silicon integrated circuits. Target languages
may be driver codes for laser printers, other natural languages, or integrated
circuit masks. In all these the comprehension of computer languages and
translation into other languages is important.

This book concentrates on compilation from conventional procedural lan-
guages, such as Pascal or C, into conventional machine codes as typically found
on a modern microprocessor. Ideas are illustrated throughout by examples using
VSL, a very simple block-structured procedural language and its compilation for
VAM, a byte stream machine with a reduced instruction set.

1.2 The structure of a compiler

The translation of a programming language naturally breaks down into a
number of logical phases. These phases may run simultaneously, or they may run
consecutively. At its simplest level we may break down a compiler into a front end,
responsible for the analysis of the structure and meaning of the source text;and a
back end, responsible for generating the target language.

Each of these may be further subdivided into logical blocks. The front end can
be divided into lexical analyser, syntax analyser, and semantic analyser. The
lexical analyser, sometimes also called the scanner, carries out the simplest level of
structural analysis. It will group the individual symbols of the source program
text into their logical entities. Thus the sequence of characters ‘W', ‘H’, T', ‘L,
and ‘E’ would be identified as the word ‘WHILE’ and the sequence of characters
‘r’, *’, and ‘0’ wouyld be identified as the floating point number, 1.0.

The syntax analyser, often also called the parser, analyses the overall structure

- of the whole program, grouping the simple entities identified by the scanner into
the larger constructs, such as statements, loops, and routines, that make up a
complete program. Just as the structure of English prose is determined by the
rules of English grammar, so we have formal grammars to describe the structure of
computer programs.

WHAT IS A COMPILER? 5

Once the structure of the program has been determined we can then analyse its
meaning (or semantics). We can determine which variables are to hold integers,
and which to hold floating point numbers, we can check that the size of all arrays
is defined and so on.

At this stage the program has been partially translated into some intermediate
representation. The back end of the compiler takes this and with the information
provided on the structure and meaning of the source program, generates an
equivalent program in the target language. Often this involves more than one
phase, to ensure an efficient translation of the high-level language program.

First of all an intermediate code optimizer may transform the intermediate
representation into a more efficient equivalent. After this comes the code
generator, generating an equivalent pregram for the target machine. Finally there
may be a target code optimizer to improve further the generated code.

Good optimizers can be very time consuming. It is not at all uncommon for the
optimizer not to be used during program development and only to be brought in
for the last compilation of the complete program.

This is not quite all that is involved in a compiler. It is usual to have to provide
a run-time system to support the compiled language. Some high-level language
constructs, such as input and output and interrupt handling, are inherently
complex. Compiled code would be immensely large if such constructs were
translated into target code each time they were encountered and so instead we
provide them as subroutines and compile calls to the subroutines when necessary.
These subroutines form the run-time library. In addition the run-time system will
include some start-up code to initialize the machine before the compiled program
is run, and some termination code to put the system back in a standard state at
the end of a run.

The operation of a compiler is summarized in Fig. 1.2.

1.2.1 LANGUAGES FOR WRITING COMPILERS

Compilers are relatively large programs involving a lot of programming effort
and we wish them to be as portable as possible. The front end can remain the
same for a wide range of target machines. The back end differs for each target
machine, but even here there is scope for reuse of code.

Which language should we choose for maximum portability? Machine code
has the advantage that it is always available. This was invariably the approach
used with early compilers, a typical example being the FORTRAN compiler for
the IBM 709. However, it is the least portable, since our compiler will only run on
one machine. Furthermore, writing a program as large as a compiler in machine
code is extremely demanding.

An alternative is to implement in an existing high-level language that is already
widely available. We then have the programming power of a high-level language
and our compiler can be ported to any machine that supports the implementation
language. This does not give us the widest portability, since we are restricted to
those machines supporting the implementation language. It does not help

e

e

6 INTRODUCTION TO COMPILING TECHN#QUES
Source
language §

Lexical
analysis

Formal
- gramrar

Front < Syntax
end analysis

¢

Semantic
analysis

Intermediate
code optimizer

4

Back Code
end generator

¢

Target Run-time
code optimizer system

- J]

Target
language

—

\\ Figare 1.2 Operation of a compiler

N

matters that the two most widely available computer languages, FORTRAN and "
COBOL, are far from ideal for compiler writing. Despite these drawbacks this
approach has been widely used, particularly for compilers under the Unix

- operating system. Under Unix the C programming language is always available

and often used for implementing compilers. The approach is also common with
specialist research languages, usually because the compiler writer needs the

WHAT iS A COMPILER? 5

Computer A Computer B
1. Write new back
end in BCPL to
generate code
for computer B
2. Compile new

back end using

existing BCPL

running on

computer A,

generating code

for computer A

3. We now have a
) compiler running
on computer A
generating code
for computer B
4. Use this new

compiler to

generate a

complete

compiler for

computer B

5. We now have a
complete compiler

for computer B
that will run on
computer B
6. Copy this new
compiler across
and run it on
computer B

Figure 1.3 Porting the BCPL compiler

flexibility of a high-level language, rather than for reasons of portability. A typicdl
example of this is the compiler for the Ponder higher-order functional programm-
ing language, which is written in Algol 68.

A compromise approach is to write our compiler in a ‘generalized’ assembly
language. To port the compiler to a new machine we have to write an assembler
for this language to generate our target machine code. Greater portability is
achieved if the target language of our compiler is the same generalized assembly
language, since we can use the assembler to translate this into the target ianguage.
Using this approach we have simplified the problem of porting a compiler to one
of porting an assembler. An example of this approach is the Macro-SPITBOL
compiler for the SNOBOLA string-processing ianguage, which is implemented in
the generalized assembly language, MINIMAL. The target language for this
compiler is in fact an intermediate code for interpretation, the interpreter for_
which is also written in MINIMAL, aiding portability. A

There is one other approach to compiler writing, which gives the greatest
flexibility of all, and that is to write the compiler in its own source language. For
example the standard BCPL compiler is written in BCPL, and C compilers under

8 INTRODUCTION TO COMPILING TECHNIQUES

Unix are written in C. Portability is achieved by the technique of cross-
compilation. Let us consider porting a compiler for BCPL, written in BCPL, from
an existing machine, A, to a new machine, B. We take our existing compiler,
running on machine A and modify its back end to generate machine code for
machine B. We then compile this on machine A using the existing compiler. This
gives us a compiler for BCPL that runs on machine A and generates code for
machine B. We then run this compiler on machine A, using it to compile our
modified compiler for machine B. We now have a compiled version of the
modified compiler in the machine code of machine B. We can then copy this
across to machine B, giving us a BCPL compiler on machine B, generating code
for machine B. From now on we can work on machine B'alone, since we have a
working BCPL compiler. This sequence of operations is shown in Fig. 1.3. We
still have the problem of writing the first ever BCPL compiler, which must be
done using one of the techniques descridbed earlier. However once we have this
initial compiler running on one machine, then cross-compilation gives us a very
powerful way of writing a portable compiler.

T-diagrams

When considering how compilers are implemented it is often helpful to show the
programs required using T-diagrams. For each program in the system we draw a
T, with the name of the program across the top. The left and right arms of the T
show the source and target language of the program, respectively. and the bottom
leg of the T shows the language in which the program itself is implemented. If the
implementation language itself must be translated we can slot together a number
of T-diagrams, showing the translations that must be carried out for the system to
work. Figure 1.4 shows T-diagrams for the examples described in the previous
section.

1.2.2 THE IMPORTANCE OF VARIOUS PARTS OF A COMPILER

Different languages make different demands on the compiler writer. Conven-
tional block structured languages, such as Algol, Pascal, or C, have relatively
complex formal grammars. The syntax analysers for such languages are a major
part of the compiler. Once the structure is understood, then simple code
generation is relatively straightforward, because modern computer architectures
are orientated towards such languages. The large numbers of cases that have to
be considered mean such code generators are not small, but they are not too
difficult to write and execute quickly. Should a code optimizer be added then this
will increase the size, and reduce the performance of the whole back end. In
addition, such languages nec¢d a run-time system, but again this need not be too
large. In general with this type of language we see a fairly even balance between
front end and back end of the compiler.

Other types of language place different emphasis on the parts of the compiler.
Functional languages and their relatives, such as LISP or ML, often have simple

WHAT IS A COMPILER?

FORTRAN compiler

iBM 709
FORTRAN . machine

code

1BM 709
machine
code

Ponder compiler
1BM 370
machine
code

An early FORTRAN compiler
runming on the {BM 709

The ponder compiler written in Algol 68 and
running on the IBM 370

Algol 68

Algol 68

FLACC Algol 68

IBM 370
machine
code

IBM 370
machine
code

Macro - SPITBOL

intermediate
code

SNOBOL4

MINIMAL

MINIMAL assembler

1BM 370
MINIMAL machine

code

IBM 370
machine
code

BCPL compiler for B

Machine
BCPL code

for B |

BCPL compiler for A
Machine
BCPL code
forA

Figure 1.4 Some typical T-diagrams

The Macro - SPITBOL compiler, written in
MINIMAL, which must be assembled

The BCPL cross-compiler of Figure 1.3

