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Preface

Nonlinear optics is the study of the interaction of intense laser light with
matter. This book is a textbook on nonlinear optics at the level of a beginning
graduate student. The intent of the book is to provide an introduction to the
field of nonlinear optics that stresses fundamental concepts and that enables
the student to go on to perform independent research in this field. The author
has successfully used a preliminary version of this book in his course at the
University of Rochester, which is typically attended by students ranging from
seniors to advanced PhD students from disciplines that include optics, physics,
chemistry, electrical engineering, mechanical engineering, and chemical engi-
neering. This book could be used in graduate courses in the areas of nonli-
near optics, quantum optics, quantum electronics, laser physics, electrooptics,
and modern optics. By deleting some of the more difficult sections, this book
would also be suitable for use by advanced undergraduates. On the other
hand, some of the material in the book is rather advanced and would be suit-
able for senior graduate students and research scientists.

The field of nonlinear optics is now thirty years old, if we take its beginnings
to be the observation of second-harmonic generation by Franken and
coworkers in 1961. Interest in this field has grown continuously since its
beginnings, and the field of nonlinear optics now ranges from fundamental
studies of the interaction of light with matter to applications such as laser
frequency conversion and optical switching. In fact, the field of nonlinear
optics has grown so enormously that it is not possible for one book to cover all
of the topics of current interest. In addition, since I want this book to be
accessible to beginning graduate students, I have attempted to treat the topics
that are covered in a reasonably self-contained manner. This consideration
also restricts the number of topics that can be treated. My strategy in deciding
what topics to include has been to stress the fundamental aspects of nonlinear
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xii Preface

optics, and to include applications and experimental results only as necessary
to illustrate these fundamental issues, Many of the specific topics that [ have
chosen to include are those of particular historical value.

Nonlinear optics is notationally very complicated, and unfortunately much
of the notational complication is unavoidable. Because the notational aspects
of nonlinear optics have historically been very confusing, considerable effort is
made, especially in the early chapters, to explain the notational conventions.
The book uses primarily the Gaussian system of units, both to establish a
connection with the historical papers of nonlinear optics, most of which were
written using the Gaussian system, and also because the author believes that
the laws of electromagnetism are more physically transparent when written in
this system. At several places in the text (see especially the appendices at the
end of the book), tables are provided to facilitate conversion to other systems
of units.

The book is organized as follows: Chapter 1 presents an introduction to the
field of nonlinear optics from the perspective of the nonfinear suscepttbility.
The nonlinear susceptibility is a quantity that is used to determine the
nonlinear polarization of a material medium in terms of the strength of an
applied optical-frequency electric field. It thus provides a framework for
describing nonlinear optical phenomena. Chapter 2 continues the descrip-
tion of nonlinear optics by describing the propagation of light waves through
nonlinear optical media by means of the optical wave equation. This chapter
introduces the important concept of phase matching and presents detailed
descriptions of the important nonlinear optical phenomena of second-
harmonic generation and sum- and difference-frequency generation. Chapter
3 concludes the introductory portion of the book by presenting a description
of the quantum mechanical theory of the nonlinear optical susceptibility.
Simplified expressions for the nonlinear susceptibility are first derived through
use of the Schrodinger equation, and then more accurate expressions are
derived through use of the density matrix equations of motion. The density
matrix formalism is itself developed in considerable detail in this chapter in
order to render this important discussion accessible to the beginning student.

Chapters 4 through 6 deal with properties and applications of the nonlinear
refractive index. Chapter 4 introduces the topic of the nonlinear refractive
index. Properties, including tensor properties, of the nonlinear refractive index
are discussed in detail, and physical processes that lead to the nonlinear
refractive index, such as nonresonant electronic polarization and molecular
orientation, are described. Chapter 5 is devoted to a description of non-
linearities in the refractive index resulting from the response of two-level
atoms. Related topics that are discussed in this chapter include saturation,
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power broadening. optical Stark shifts, Rabi oscillations, and dressed atomic
states. Chapter 6 deals with applications of the nonlinear refractive index.
Topics that are included are optical phase conjugation, self focusing, optical
bistability, two-beam coupling, pulse propagation, and the formation of
optical solitons.

Chapters 7 through 9 deal with spontaneous and stimulated light scattering
and the related topic of acoustooptics. Chapter 7 introduces this area by
presenting a description of theories of spontaneous light scattering and by de-
scribing the important practical topic of acousto-optics. Chapter 8 presents a
description of stimulated Brillouin and stimulated Rayleigh scattering. These
topics are related in that they both entail the scattering of light from material
disturbances that can be described in terms of the standard thermodynamic
variables of pressure and entropy. Also included in this chapter is a description
of phase conjugation by stimulated Brillouin scattering and a theoretical
description of stimulated Brillouin scattering in gases. Chapter 9 presents a
description of stimulated Raman and stimulated Rayleigh-wing scattering.
These processes are related in that they entail the scattering of light from
disturbances associated with the positions of atoms within a molecule.

The book concludes with Chapter 10, which treats the electrooptic and
photorefractive effects. The chapter begins with a description of the electroop-
tic effect and describes how this effect can be used to fabricate light
modulators. The chapter then presents a description of the photorefractive
cffect, which is a nonlinear optical interaction that results from the electrooptic
effect. The use of the photorefractive effect in two-beam coupling and in four-
wave mixing is alsc described.

The author wishes to acknowledge his deep appreciation for discussions
of the material in this book with his graduate students at the University of
Rochester. He is sure that he has learned as much from them as they have
from him. He also gratefully acknowledges discussions with numerous other
professional colleagues, including N. Bloembergen, D. Chemla, R. Y. Chiao,
J. H. Eberly, C. Flytzanis, J. Goldhar, G. Grynberg, J. H. Haus, R. W. Hell-
warth, K. R. MacDonald, S. Mukamel, P. Narum, M. G. Raymer, J. E. Sipe,
C.R. Stroud, Jr., C. H. Townes, H. Winful, and B. Ya. Zel’dovich. In addition,
the assistance of J. J. Maki and A. Gamliel in the preparation of the figures
is gratefully acknowledged.
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Chapter 1

The Nonlinear Optical
Susceptibility

1.1. Introduction to Nonlinear Optics

Nonlinear optics is the study of phenomena that occur as a consequence of the
modification of the optical properties of a material system by the presernce of
light. Typically, only lase. light is sufficiently intense to modify the optical
properties of® material systemn. In fact, the beginning of the field of nonlinear
optics 1s often taken to be the discovery of second-harmonic generation by
Franken et al in 1961, shortly after the demonstration of the first working
laser by Maiman in 1960. Nonlinear optical phenomena are “nonlinear” in the
sense that they occur when the response of a material system to an applied
optical field depends in a nonlinear manner upon the strength of the optical
field. For example, second-harmonic generation occurs as a result of the part
of the atomic response that depends quadratically on the strength of the
applied optical field. Consequently, the intensity of the light generated at the-
second-harmonic frequency tends to increase as the square of the intensity of
the applied laser light.

In order to describe more precisely what we mean by an optical nonZ
linearity, let us consider how the dipole moment per unit volume, or polariza-
tion P(1), of a material system depends upon the strength £(r) of the applied
optical field.* In the case of conventional (i.., linear) optics, the induced

* Throughout the text, we use the tilde to denote a quantity that varies rapidly in time.’
Constant quantities, slowly varying quantities, and Fourier amplitudes are written without the
tilde, See, for example, Eq. (1.2.1).



2 1 ¢ The Nonlinear Optical Susceptibility

polarization depends linearly upon the electric field strength in a manner
that can often be described by the relationship

P(t) = yVE(@), (1.1.1)

where the constant of proportionality y*’ is known as the linear susceptibility.
In nonlinear optics, the nonlinear optical response can often be described by
generalizing Eq. (1.1.1) by expressing the polarization P(z) as a power series in
the field strength E(r) as

Pty = yVE@ + xPEX ) + B0 + -

. N . (1.1.2)
= P(l)([) + P‘Z’([) + p<3)([) + -

The quantities y'*’ and y'* are known as the second- and third-order non-
lincar optical susceptibilities, respectively. For simplicity, we have taken the
fields P(1) and E(1) to be scalar quantities in writing Egs. (1.1.1) and (1.1.2). In
Section 1.3 we show how to treat the vector nature of the fields; in such a case
1'" becomes a second-rank tensor, ¥ becomes a third-rank tensor, etc. In
writing Egs. (1.1.1) and (1.1.2) in the form shown, we have also assumed that
the polarization at time ¢ depends only on the instantaneous value of the
electric field strength. The assumption that the medium responds instanta-
neously also implies (through the Kramers—Kronig relations)* that the
medium must be lossless and dispersionless. We shall see in Section 1.3 how
to generalize these equations for the case of a medium with dispersion and
. loss. In general, the nonlinear susceptibilities depend on the frequencies of the
applied fields, but under our present assumption of instantaneous response
we take them to be constants.

We shall refer to P(r) = y®E(t)? as the second-order nonlinear polariza-
tion and to P(1) = y¥E(1)® as the third-order nonlinear polarization. We
shall see later in this section that the physical processes that occur as a result
of the second-order polarization P® are distinct from those that occur as a
result of the third-order polarization P®. In addition, we shall show in Sec-
tion 1.5 that second-order nonlinear optical interactions can occur only in
noncentrosymmetric crystals, that is, in crystals that do not display inversion
symmetry. Since liquids, gases, amorphous solids (such as glass), and even
many crystals do display inversion symmetry, y'?’ vanishes identically for
such media, and consecjuent}y they cannot produce second-order nonlinear
optical interactions. On the other hand, third-order nonlinear optical interac-

* Sce, for examiple, Loudon (1983) for a discussion of the Kramers- Kronig relations.
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tions (i.e., those described by a x*' susceptibility) can occur both for centro-
symmetric and noncentrosymmetric media.

We shall see in later sections of this book how to calculate the values of
the nonlinear susceptibilities for various physical mechanisms that can lead
to optical nonlinearities. For the present, we shall make a simple order-of-
magnitude estimate of the size of these quantities for the common case in
which the nonlinearity is electronic in origin. One might expect that the
lowest-order correction term P'® would be comparable to the linear response
P when the amplitude of the applied field strength E was of the order of
the characteristic atomic electric field strength E,, = e/a], where —e is the
charge of the electron and a, = #%/me? is the Bohr radius of the hydrogen
atom (here 4 is Planck’s constant divided by 2z, and m is the mass of the
electron). Numerically, we find that E,, = 2 x 107 esu.* We thus expect that
under conditions of nonresonant excitation the second-order susceptibility
x'* will be of the order of y''/E,,. For condensed matter x*) is of the order
of unity, and we hence expect that x* will be of the order of 1/E,,, or that

cm

statvolt” (1.1.3)

7P =5x 10 %esu=5x 1078
Similarly, we expect x'® to be of the order of y"'/E%, which for condensed
matter is of the order of

cm?

D3I x107Pesu=3x 1071 —— .
X statvolt?

(1.1.4)

The most common procedure for describing nonlinear optical phenomena
is based on expressing the polarization P(t)in terms of the applied electric field
strength E(t), as we have done in Eq. (1.1.2). The reason why the polarization
plays a key role in the description of nonlinear optical phenomena is that
a time-varying polarization can act as the source of new components of the
electromagnetic field. For example, we shall see in Section 2.1 that the wave
equation in nonlinear optical media often has the form

n? 0*E  4r %P

Vi — =
c? ot e? o2’

(1.1.5)

* Except where otherwise noted, we use the gaussian system of units in this book. Following
standard conventions, we usually do not give the dimensions of physical quantities explicitly, but
instead quote values simply in gaussian units or (equivalently for all cases treated herein) in
electrostatic units, abbreviated esu. For the present case, the dimensions of E, arestatvolt/cm. See
also the discussion in the appendix to this book on the conversion between systems of units.
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where n is the refractive index and ¢ is the speed of light in vacuum. We can
interpret this expression as an inhomogeneous wave equation in which the
polarization P drives the electric field E. This equation expresses the fact that,
whenever ¢2P/¢t? is nonzero. charges are being accelerated, and according

.to Larmor’s theorem from electromagnetism, accelerated charges generate

electromagnetic radiation.

1.2. Descriptions of Nonlinear Optical Interactions

In the present section, we present brief qualitative descriptions of a number of
nonlinear optical interactions. In addition. for those processes that can oceut
in a lossless medium, we indicate how they can be described in terms of the
nonlinear contributions to the polarization described by Eq. (1.1.2).* Our
motivation is to provide the reader with an indication of the variety of
nonlinear optical phenomena that can occur. These interactions are described
in greater detail in later sections of this book. In this section we also introduce
some notational conventions and some of the basic concepts of nonlinear
optics.

Second-Harmonic Generation

As an example of a nonlincar optical inicraction, let us consider the process of
second-harmonic generation, which is illustrated schematically in Fig. 1.2.1.

(b)
(a)

A

T o w
w o)
> 7@ , R D Y

2w g A

w
’

FiGure 1.2.1  (a) Geometry of second-harmonic generation. (b Energv-level dia-
gram describing second-harmonic generstion

* Recall that Eq. ¢! 1 2)is valid only for o mediam that 1s lossless and dispersionless.
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Here a laser beam whose electric field strength is represented as

E(t) = Ee™™' 4 cc. (1.2.1)
is incident upon a crystal for which the second-order susceptibility x'* is
nonzero. The nonlinear polarization that is created in such a crystal is given
according to Eq. (1.1.2) as P?(1) = y @' E*(1) or as

F‘Z)(t) - 2;(‘2’EE* + (th)Eze—zmz + cc). (1.2.2)

We see that the second-order polarization consists of a contribution at zero
frequency (the first term) and a contribution at frequency 2w (the second term).
According to the driven wave equation (1.1.5), this latter contribution can lead
to the generation of radiation at the second-harmonic freguency. Note that
the first contribution in Eq. (1.2.2) does not lead to the generation of elec-
tromagnetic radiation (because its second time derivative vanishes): it leads
to a process known as optical rectification in which a static electric field is
created within the nonlinear crystal.

Under proper experimental conditions, the process of second-harmonic
generation can be so efficient that nearly all of the power in the incident
radiation at frequency w is converted to radiation at the second-harmonic
frequency 2. One common use of second-harmonic generation is to convert
the output of a fixed-frequency laser into a different spectral region. For
example, the Nd:YAG laser operates in the near infrared at a wavelength
of 1.06 um. Second-harmonic generation is routinely used to convert the
wavelength of the radiation t0 0.53 um, in the middle of the visible spectrum.

Second-harmonic generation can also be visualized by considering the ifi-
teraction in terms of the exchange of photons between the various frequency
components of the field. According to this picture, which is illustrated in
part (b) of Fig. 1.2.1, two photons of frequency w are destroyed and a photon
of frequency 2w is simultaneously created in a single quantum-mechanical
process. The solid line in the figure represents the atomic ground state, and
the dashed lines represent what are known as virtual levels. These levels are
not energy eigenlevels of the free atom, but rather represent the combined
energy of one of the energy eigenstates of the atom and of one or more
photons of the radiation field. )

The theory of second-harmonic generation is developed more fully in
Section 2.6.
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Sum- and Difference-Frequency Generation

Let us next consider the circumstance in which the optical field incident upon
a nonlinear optical medium characterized by a nonlinear susceptibility x?
consists of two distinct frequency components, which we represent in the form

E(t)= E e ™" 4+ Eje ™% 4 cc. (1.2.3)

Then, assuming as in Eq. (1.1.2) that the second-order contribution to the
nonlinear polarization is of the form

PO = Y PE(?, (1.2.4)

we find that the nonlinear polarization is given by

ﬁ(Z)(t) — 1(2)[E%e*2iw\l + ng,*(’Z(uzl + 2E1Eze*(w;+w;)z

_ i (1.2.5)
+ 2E E¥e v o2y cc] + 2y'P[E,E¥ + E,E¥].
It is convenient to express this result using the notation
P =Y Plw,)e o, (1.2.6)
n

where the summation extends over positive and negative frequencies w,. The
complex amplitudes of the various frequency components of the nonlinear
polarization are hence given by

PQRw,) = y'PE? (SHG),
PQ2w,) = y¥EZ (SHG)
P(w; + w,) = 25 E,E, (SFG), (1.27)
P{w, — w,} =23y PE,E¥ (DFG),
P(0) = 24'E,E + E,E¥) (OR).

Here we have labeled each expression by the name of the physical process
that it describes, such as second-harmonic generation (SHG), sum-frequency
generation (SFG), difference-frequency generation (DFG), and optical recti-
fication (OR). Note that, in accordance with our complex notation, there
is also a response at the negative of each of the nonzero frequencies given
above:

P(—2w,) = X(z)ETZ, P(—2w,;) = Z‘J)Efzs

(1.2.8)
P(~w, — w,) =2y Y'EYE} Plw;, — wy) = 2X(Z)EzEf-
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However, since each of these quantities is simply the complex conjugate of one
of the quantities given in Eq. (1.2.7), it is not necessary to take explicit account
of both the positive and negative frequency components.* ,

We see from Eq. (1.2.7) that four different nonzero frequency components
are present in the nonlinear polarization. However, typically no more than one
of these frequency components will be present with any appreciable intensity
in the radiation generated by the nonlinear optical interaction. The reason for
this behavior is that the nonlinear polarization can efficiently produce an
output signal only if a certain phase-matching condition {which is discussed in
detail in Section 2.7) is satisfied, and usually this condition cannot be satisfied
for more than one frequency component of the nonlinear polarization.
Operationally, one often chooses which frequency component will be radiated
by properly selecting the polarization of the input radiation and orientation of
the nonlinear crystal.

Sum-Frequency Generation

Let us now consider the process of sum-frequency generation, which is illus-
trated in Fig: 1.2.2. According to Eq. (1.2.7), the complex amplitude of the
nonlinear polarization describing this process is given by the expression

P(w, + w,) = 24" E,E,. (1.2.9)

In many ways the process of sum-frequency generation is analogous to that of
second-harmonic generation, except that in sum-frequency generation the two
input waves are at different frequencies. One application of sum-frequency
generation is to produce tunable radiation in the ultraviolet spectral region by

* Not all workers in nonlinear optics use our conventjon that the fields and polarizations are
given by Egs. (1.2.3) and {1.2.6). Another common convention is to define the field amplitudes
according to

Etry = L(Ee™ " + Epe ™" 4 ¢,
Pty =4 Y Pluo)e o,
where in the second expression the summation extends over all positive and negative frequencies.
Using this convention, one finds that
P'Q2wy) = 52K, P'(2wy) = 52PEY,
P, + wy) = yPEE). P, — ;) = YPEE,
P'(0y = y*XEVET* + E3E%).

Note that these expressions differ from Egs. (1.2.7) by factors of £,



