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PREFACE

This book presents our view of what an introduction to mathematical statis-
_tics for students with a good mathematics background should be. By a good
mathematics background we mean linear atgebra and matrix theory, and advanced
calculus (but no measure theory). Since the book is an introduction to statistics we
need probability theory and expect readers to have had a course at the level of, for
instance, P. Hoel, S. Port and C. Stone’s Introduction to Probability Theory. Our
appendix does give all the probability that is needed. However, the treatment is
abridged with few proofs and no examples or problems.

We feel such an introduction should at least do the following:

(1) Describe the basic concepts of mathematical statistics indicating the
relation of theory to practice. o

(2) Give careful proofs of the major ‘‘elementary” results such as the
Neyman-Pearson lemma, the Lehmann-Scheffé theorem, the information inequal-
ity and the Gauss-Markoff theorem.

(3) Give heuristic discussions of more advanced results such as the large
sample theory of maximum likelihood estimates, and the structure of both Bayes
and admissible solutionsé in decision theory. The extent to which holes in the
discussion can be patched and where patches can be found should be clearly
indicated.

vil



viii PREFACE

(4) Show how the ideas and results apply in a variety of important subfields
such as Gaussian linear models, multinomial models, and nonparametric models.

Although there are several good books available for this purpose we feel that
none has quite the mix of coverage and depth desirable at this level. The work of
Rao, Linear Statistical Inference and Its Applications, 2nd ed., covers most of
the material we do and much more but at a more abstract level employing measure
theory. At the other end of the scale of difficulty for books at this level is the work
of Hogg and Craig, Introduction to' Mathematical Statistics, 3rd ed. These au-
thors also discuss most of the topics we deal with but in many instances do not
include detailed discussion of topics we consider essential such as existence and
computation of procedures and large sample behavior.

Our book contains more material than can be covered in two quarters. In the
two quarter courses for graduate students in mathematics, statistics, the physical
sciences and engineering that we have taught we cover the core Chapters 2 to 7
which go from modelling through estimation and testing to linear models. In
addition we feel Chapter 10 on decision theory is essential and cover at least the
first two sections. Finally we select topics from Chapter 8 on discrete data and
Chapter 9 on nonparametric models.

Chapter 1 covers probability theory rather than statistics. Much of this
material unfortunately does not appear in basic probability texts but we need to
draw on it for the rest of the book. It may be integrated with the material of
Chapters 2-7 as the course proceeds rather than being given at the start; or it
may be included at the end of an introductory probability course which precedes
the statistics course.

A special feature of the book is its many problems. They range from trivial
numerical exercises and elementary problems intended to familiarize the students
with the concepts to material more difficult than that worked out in the text. They
are included both as a check on the student’s mastery of the material and as
pointers to the wealth of ideas and results that for obvious reasons of space could
not be put into the body of the text.

Conventions: (i) In order to minimize the number of footnotes we have
added a section of comments at the end of each chapter preceding the problem
section. These comments are ordered by the section to which they pertain. Within
each section of the text the presence of comments at the end of the chapter is
signalled by one or more numbers, 1 for the first, 2 for the second, etc. The:
comments contain digressions, reservations and additional references. They need
to be read only as the reader’s curiosity is piqued.

» (i1} Various notational conventions and abbreviations are used in the text. A

list of the most frequently occurring ones indicating where they are introduced is
given at the end of the text.
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(iii) Basic notation for probabilistic objects such as random variables and
vectors, densities, distribtuion functions and moments is established in the Ap-
pendiXx.

We would like to acknowledge our indebtedness to colleagues, students, and
friends who helped us during the various stages (notes, preliminary edition, final
draft), through which this book passed. E. L. L.ehmann’s wise advise has played a
decisive role at many points. R. Pyke’s careful reading of a next-to-final version
caught a number of infelicities of style and content. Many careless mistakes and
typographical errors in an earlier version were caught by D. Minassian who sent
us an exhaustive and helpful listing. W. Carmichael, in proofreading the final
version, caught more mistakes than both authors together. A serious error in
Problem 2.2.5 was discovered by F. Scholz. Among many others who helped in
the same way we would like to mention C. Chen, S. J. Chou, G. Drew, C. Gray,
U. Gupta, P. X. Quang, and A. Samulon. Without Winston Chow’s lovely plots
Section 9.6 would probably not have been written and without Julia Rubalcava’s
impeccable typing and tolerance this text would never have seen the light of day.

We would also like to thank the colleagues and friends who inspired and
helped us to enter the field of statistics. The foundation of our statistical knowl-
edge was obtained in the lucid, enthusiastic and stimulating lectures of Joe
Hodges and Chuck Bell, respectively. Later, we were both very much influenced
by Erich Lehmann whose ideas are strongly reflected in this book.

Last and most important we would like to thank our wives Nancy Kramer
Bickel and Maria Delasalas Doksum and our families for support, encourage-
ment, and active participation in an enterprise which at times seemed endless.

Peter J. Bickel
Kjell Doksum

Berkeley
1976
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CHAPTER 1
SOME TOPICS IN PROBABILITY

_In this chapter we will give some results in probability theory, which are essential
in our treatment of statistics and which may not be treated in enough detail in some

probability texts.
Measure theory will not be used. We make the blanket assumption that all

sets and functions considered are measurable.

1.1. CONDITIONING BY A RANDOM VARIABLE OR VECTOR

The concept of conditioning is important in studying associations between random
variables or vectors. In this section we present some results useful for prediction
theory, estimation theory, and regression.

1.1.A. The Discrete Case

The reader is already familiar with the notion of the conditional probability of an
event A given that another event B has occurred. If X and Y are discrete random
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vectors possibly of different dimensions we want to study the conditional prob-
ability structure of X given that Y has taken on a particular value y.
Define the conditional frequency function p(-|y) of X given Y = y by,

P(%.y)
Px(y)

where p and py are the frequency functions of (X, Y) and Y. The conditional fre-
quency function p is defined only for values of y such that py(y) > 0. With this
definstion it is clear that p(-|y) is the frequency function of a probability distribu-.
tion, since

(1.L.D px|ly) = P[X =x]¥ =y] =

) = =Py _PY)
=Px[9) (y) (Y

by (A.8.11). This probability distribution is called the conditional distribution of X
given that Y = y.

Example 1.1.1. Let X = (X}, ..., X,), where the X are the indicators of a set of
n binomial trials with probability of success p. Let ¥ = I]_, X, the total number
- of successes. Then Y has a binomial, #(n, p), distribution and

PIX=x,Y=y] p(-p" 1

n ¥ — -y n ¥y —_ "")'— B
Cro-r G ()

if the x; are all 0 or 1 and Tx; = y.
" Thus, if we are told we obtained k successes in # binomial trials, then these
successes are as likely to occur on one set of trials as on any other. 1B

(1.1.2) p(x|y) =

Example 1.1.2. Let X and Y have the joint frequency function given by the table
TABLE 111
x 0 10 20 Px(x)

0 0.25 0.05 0.05 0.35
1 0.05 0.15 0.05 0.25

2 0.05 0.10 0.25 0.40

n(y | 035 0.30 0.35 1

For instance, suppose Y is the number of cigarettes that a person picked at random
from a certain population smokes per day (to the nearest 10), and X is a general
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health rating for the same person with 0 corresponding to good, 2 to poor, and 1
to neither. We find for y = 20

x[O[l’Z

ey | 4 | 4 | s

These figures would indicate an association between heavy smoking and poor health,
since p(2|20) is almost twice as large as py(2).

The conditional distribution of X given Y =y is easy to calculate in two
special cases.

(i) If X and Y are independent p(x|y) = px(x) and the conditional distri-
bution coincides with the marginal distribution.

(ii) If X is a function of Y, A(Y), then the conditional distribution of X is
degenerate, X = h(y) with probability 1.

Both of these assertions follow immediately from Definition (1.1.1).
Two important formulae follow from (1.1.1) and (A.4.5). Let ¢(y|x) denote
the conditional frequency function of Y given X = x. Then,

(1.1.3) : p(x,y) = p(x|y)py(y)

(1.1.4) pix|y) = JII g, eo pyle

Z.9(y|Dpx(®)

whenever the denominator of the right-hand side is positive.

Equation (1.1.3) can be used for model construction. For instance, suppose
that the number Y of defectives in a lot of N produced by a manufacturing process
~ has a #(N, 6) distribution. Suppose the lot is sampled » times without replacement

and let X be the number of defectives found in the sample. We know that given
Y = y, X has a hypergeometric, #(y, N,n), distribution. We can now use (1.1.3)

to write down the joint distribution of X and ¥
(y)(N - y)
N x\n—-x
], . = = = "1 — LS QU WA, SIS 2
(1.1.5) P[X=x Y=y] (y)ﬂ( 0) (N)
n

where the combinatorial coefficients (§) vanish unless a, b are integers with b < a.
We can also use this model to illustrate (1.1.4). Since we would usually only
observe X, we may want to know what the conditional distribution of Y given

)

X = xis. By (1.1.4) this is,
— = - N 1 — gy N-—y
P[Y =y|X = x] —<y)9 (1 - 6y (x)(n—x)/c(x)
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where ¢(x) = Z,(¥)6’(1 - 8)"=*(2)("-2). This formula simplifies to (see Problem
1.1.11) the binomial probability,

(116) P[Y: le = x] — (N - n)oy—x(l - B)N—n—(y-x).
y-x

1.1.B. Conditional Expectation for Discrete Variables

Suppose that X is a random variable with E(|X]) < co. Define the conditional ex-
pectation of X given Y =y, written E(X|Y =y), by

(YY) Py

(.17 EX|Y =y) = Z,xp(x]y).
Note that by (1.1.1), if py(y) > 0,
(1.1.8) L. x|prly) < 2o x| 22 = E(x])

Example 1.1.3. Suppose X and Y have the joint frequency function of Table 1.1.1
above. We find

EX|Y=20)=0-3+1-3+2-3=4 =157

Similarly, E(X|Y = 10) =} = 1.17 and E(X|Y =0) = 3 = 0.43. Note that in the
health versus smoking context, we can think of E(X|Y = p) as the mean heaith
rating for people who smoke y cigarettes a day. Wl

Let g(y) = E(X|Y = y). The random variable g(Y) is written E(X 1Y) and
is called the conditional expectation of X given Y.t

As an example we calculate E(X,| ¥) where X, and Y are given in Example 1.1.1.
We have,

i—1

(i24)
(1.19) E(X1|Y=i)=P[X,=1|Y=i]=—(;j—=%-
i

The first of these equalities holds because X, is an indicator. The second follows
from (1.1.2), since (- }) is just the number of ways I successes can occur in # trials
with the first trial being a success. Therefore,

- (1.110) (| ¥) = o

~ The conditional distribution of a random vector X given Y = y corresponds

1We shall follow the convention of also calling E(X |Y) any variable which is equal to g(Y) with probability 1.
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to a single probability measure P, on (Q, o). Specifically, define for 4 € o,
(1.1.11) P,(A) = P(A|[Y = y]) if py(y) > 0.

This P, is just the conditional probability measure on (Q, /) mentioned in (A.4.2).
Now the conditional distribution of X given Y =y is the same as the distribution
of X if P, is the probability measure on (R, o), Therefore, the conditional expecta-
tion is an ordinary expeciation with respect to the probability measure P,. It follows
that all the properties of the expectation given in (A.10.3)—(A.10.8) hold for the
conditional expectation given Y = y. For example,

(1.1.12) E(@X, + pX,|Y = y) = «E(X,|Y = y) + BE(X,]Y = y)

identically in y for any X;, X, such that E(| X,|), E(| X, |) are finite. Since the identity
holds for all y we have,

(1.1.13) E(eX, + BX,]Y) = aE(X,|Y) + BE(X,|Y).

This process can be repeated for each of (A.10.3)-(A.10.8) to obtain analogous

properties of the conditional expectation. An important example of this type of

argument is given in Section 1.6.
In two special cases we can calculate conditional expectations immediately.

If X and Y are independent and E(|X|) < oo, then
(1.1.14) E(X|Y) = E(X).

This is clear by (i).
On the other hand by (ih)

(1.1.15) E(h()]Y) = K(Y).

The notion implicit in {1.1.15) is that given Y =y, Y acts as a constant. If
we carry this further we hav: a relation which we shall call the substitution theorem

Jor conditional expectations:
(1.1.16) E@X, VY =y) = E(@gX,p)|Y =y),

for all y such that py(y) > 0 and ¢(X, Y) has a finite expectation. Assertion (1.1.16)
is immediate, since

(1.1.17)
PlgX,Y)=alY=y]=PgX,Y)=a, Y=y|Y=y] = PlgX,y) =a|Y =]

for any a.
If we put ¢(X, Y) = r(X)4(Y), where 4 is bounded and r(X) has a finite ex-

pectation, we obtain by (1.1.16),
(1.1.18)  Er(XKY)|Y = y) = E¢X)H(V|Y = ¥) = {YECX)]Y = y).
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Therefore,
(1.1.19) E(r(X)h(Y)‘Y) = h(Y)E(r(X)| Yi.

Another intuitively reasonable result is that the mean of the conditional means
is the mean:

(1.1.20) E(E(X|Y)) = E(X),

whenever X has a finite expectation. We refer to this as the double expectation

theorem.
To prove (1.1.20) we write, in view of (1.1.7) and (A.10.5),

E(E(X]Y)) = Z, py(N[Z:xp(x|y)]
(1.1.21) =X, ,xp(x|Y)py(y)
= Zx.yxp(-x’y) = E(X).

The interchange of summation used is valid, since the finiteness of E(| X|) implics
that all sums converge absolutely
As an illustration, we check (1.1.20) for E(X,|Y) given by (1.1.10). In this case,

(1.1.22y E(E(X,| 1)) = E(—’i) =" - p = Ex)).

n

If we apply (1.1.20) to X = r(X)h(Y) and use (1.1.19), we obtain the product
expectation formula:

Theorem 1.1.1. If A(Y) is bounded and E(|r(X)|) < oo, then
(1.1.23) E(r(X)h(Y)) = E(R(Y)E(r(X)|Y)).
- Note that we can express the conditional probability that X € A given Y = y as
P[X € 4]Y = y] = EU,X)|Y = ¥) = Eeup(x|y).

Then by taking r(X) = I,(X), 2 = | in Theorem 1.1.1 we can express the (uncon-
ditional) probability that X € 4 as

(1.1.24) P[X e A] = E(Er(X)|Y)) = Z,P[X e 4]Y = y]py(y).
For example, if X and Y are as in (1.1.5),

Plx<x]= z,(’;{ )ma — 0y H (%)

where H, is the distribution function of a hypergeometric distribution with param-
eters (y, N, n). :



