Ll L e e

%

2
James L. Peterson
> gty s

W .
ADDISON-WESLEY FUBLISHING COMPANY

Reading, Massachusetts + Menlo Park, California oo b’ fooll
London + Amsterdam + Don Mills, Ontario Sydney

8650032

228
7:f : g
This book is in the Addisod-We y seri¢s in Computer

Science.

Consulting Editor
Michael A. Harrison

Library of Congress Cataloging in Publication Data

Peterson, James Lyle.
Operating system concepts.

Includes bibliographies.

1, Operating systems (Computers) I. Silberschatz,
Abraham, II. Title. ’
QAT6.6.P4T5 1982 001.64 82-22766
ISBN 0-201-06097-3

Scope * Registered trademark of Control Data Corporation
VMS ™ Trademark of Digital Equipment Corporation

CP/M ™ Registered trademark of Digital Research Incorporated
UNIX ™ Trademark of Bell Laboratories

Reproduced by Addison-Wesley from camera-ready copy
prepared by the authors. -

Copyright © 1983 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may

be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of the publisher. Printed in the

United States of America. Published simultaneously in
Canada.

ISBN 0-201-06097-3
ABCDEFGHIJ-AL-89876543

-
e
-
-~
* nller

Preface

Operating systems are an essential part of a computer system.” Similar-
ly, a course on operating systems is an essential part of a computer sci-
ence education. This book is intended as a text for an introductory
course in operating systems at the junior, senior, or first-year graduate
level. It provides a clear description of the concepts underlying operating
systems. '

This book is not centered around any particular operating system or
- hardware. Instead, it discusses fundamental concepts that are applicable
to a variety of systems. Our emphasis is on solving the problems en-

countered in designing an operating system, regardless of the underly- -

ing hardware on which the system will run. We assume the reader is
familiar with general assembly language programming and computer or-
ganization. :

Content of this Book

The overall content of the book is as follows:

- 1 Introduction
2 Operating System Services
3 File Systems
4 CPU Scheduling
5 Memory Management
6 Virtual Memory
7 Disk and Drum Scheduling
8 Deadlocks
9 Concurrent Processes
10 Concurrent Programming
11 Protection
12 Design Principles
13 Distributed Systems
14 Historical Perspective

Chapters 1, 2, and 3 explain what operating systems are and what
they do. These chapters explain how the concept of an operating system
has developed, the common features of an operating system, what it
does for the user, and what it does for the computer system operator. It
is motivational, historical, and explanatory in nature. We do not deal
with how things are performed internally in these chapters. Therefore,
. these chapters are suitable for the individuals or lower-level classes who
want to learn what an operating system is, without getting into the
details of the internal algorithms.

Chapters 4 to 8 deal with the classical internal algorithms and struc-
tures: cpu scheduling, memory management, and device management. They
provide a firm practical understanding of the algorithms used, their pro-
perties, their advantages and disadvantages. The algorithms are
presented in a natural order, so that new, more complicated systems can
be built upon the understanding of simpler systems. ‘

Chapter 9 introduces the unifying concept of the computer system
as a collection of cooperating sequential processes. Chapters 10, 11, 12,
and 13 present advanced topics and current trends, including high-level
languages for writing concurrent programs, protection systems, design
principles, and distributed systems. These topics are still being
researched and may well need later revision. However, we include them
in the book for two reasons. First, although research is still ongoing

and final solutions to these problems are still being sought, there is gen-

eral agreement that these topics are important and students should be
exposed to them. Second, existing systems use these solutions, and any-
one working with operating systems over the next five years will need
to be aware of the developments in these directions. -

Each chapter ends with references to further reading. Chapter 14 is
essentially a set of references to further reading for the entire book,
describing briefly some of the most influential operating systems.

Organization

Operating systems first began to appear in the late 1950’s, and for
twenty years underwent major changes in concepts and technology. As
a result, the first-generation operating system textbooks that appeared
during this period (Brinch Hansen [1973a], Madnick and Donovan
[1974], Shaw [1974], Tsichritzis and Bernstein [1974]) tried to explain a
subject that changed even as they were written.

Now, however, operating system theory and practice appears to
have matured and ‘stabilized. The fundamental operating system con-
cepts are now well defined and well understood. While there will
undoubtably be new algorithms, the basic approach to cpu scheduling,

memory management, the user interface, 2;-{ so on, is not likely
change. Notice, for example, that there ¢ (ow really new operating
systems being written. Most large compuiters use operating systems that
were designed in the 1960’s. The newes: perating systems are being
developed for the multitude of microcon: et systems, but these ave
either CP/M, Unix, or imitations of these. i© is now possible to wiite .a

book "that presents well-understood, as:.-

system material

This text is one of a second generaii .-

books. Qur text differs from other tex:

organization. The basic concepts have -
presented, and the material flows naturai -

to more sophisticated ones.
The only controversial aspect of this «
cally the definition of the formal proce:

Almost every other text places this mates !
2. In our experience, this arrangemen: -
model is a powerful and convenient unit;’

operating systems are first introduced; ti
basic principles. To benefit from the proc: .

understand how cpu scheduling and me.:.
an image of separate virtual processors, .
tual memory space. Then, and only thern,

i-upon, classical operating

of operating system toxt-

-« the level of content and
w0 carefully organized and

izom these basic principles

13 its organization, s ifi-
el as late as Charpte. 9.
¢ ithe beginning as Cha;:ter

-+ not work. The pi: 2ss
... voncept. However, whan

udent does not kne “he
~«del, the student ne: . to
, inanagement can pies i

v with its own separate if-
{1 the student really b 3lle

to understand why the process model is «s~fuil. Once the studer.: 2as
the proper background to be able to ayuiiate the process raci-! of
operating systems, the standard material concerning processes, process
coordination, synchronization and commu«ication is presented.

Concurrency itself, in the form of cv-:lapped 1O, spooling, rcul-
tiprogramming, and time-sharing, is introciced as early as Chaptor 1.
However, we feel that the formal process el is best reserved uni'l the
basic concepts (cpu scheduling and memory management) are well
understood.

Tas

Acknowledgments

Eight years of CS 372 students at the Univarsity of Texas as Austin sif-
fered through permutations of this materiz! until we got it right. David
Orshalick helped with the early table of contents. During the writing
stage, we were invited to design and teach an operating system course
for IBM, which helped clarify our organization.

As the text was written, Carol Engeltardt deciphered our handwrit-
ing and edited our text into Scribe format Carol’s efforts throughout
this project were the only thing that got it ¢one.

Jeff Ullman helped us to get draft copies on the Dover at Stanford.
Arthur Keller and Gordon Novak helped get those drafts back to Texas.
Susan Lilly was able to understand what we were trying to say in the
drafts and edit them into readable text. Elaine Rich, Richard Cohen, and
Brian Reid explained the subtlcties of Scribe, helping us to define our
documents and make them work. The manuscript was read in various

forms by Michael Molloy, Gael Buckley, and the reviewers.
. Finally, the entire book was translated (by Scribe) into troff and pho-
totypeset. Art Rinn and Mark McCulloch were very helpful in explain-
ing the Mergenthaler 202 so that we could actually get output.

While writing this text, it became clear that we would never be able
to put in this volume everything we wanted. Thus there have already
been mutterings of ‘in the next edition ...” ‘We would appreciate it if
you, the reader,.would notify us of any errors or omissions in the book.
If you would like to suggest improvements or contribute exercises, we
- would be glad to hear from you. An errata sheet should be available to
instructors in about a year.

Iim Peterson
Avi Silberschatz

Chapter 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Chapter 2

2.1
2.2
23
2.4

Chapter 3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Introduction

What is an Operating System?
Early Systems

Simple Batch Systems
Sophisticated Batch

Time Sharing

Real-Time Systems
Multiprocessor Systems
Different Classes of Computers
Summary

Exercises

Bibliographic Notes

Operating System Services

Types of Services

The User View

The Operating System View
Summary

Bibliographic Notes

File Systems

File Concept
Operations on Files
Directory Systems

File Protection
Allocation Methods
Implementation Issues

‘Summary

Exercises
Bibliographic Notes

Contents

14

23
24
26
27
29

31
32
41

49

59
72
74
83
85

89

P

Chapter 4 CPU Scheduling

4.1 Review of Multiprogramming Concepts 91
4.2 Scheduling Concepts 93
4.3 Scheduling Algorithms ' 103
4.4 Algorithm Evaluation ’ 117
4.5 Multiple Processor Scheduling 123
4.6 Summary 124
. Exercises ‘ 125

Bibliographic Notes X 129

Chapter 5 Memory Management

5.1 Preliminaries 131
5.2 Bare Machine ’ 133
5.3 Resident Monitor - 133
-5.4 Swapping 139
5.5 Fixed Partitions 144
5.6 Variable Partitions 151
5.7 Paging 158
5.8 Segmentation 170
5.9 Combined Systems 178
5.10 Summary 181
Exercises . - 183
Bibliographic Notes 187

Chapter 6 \./irtu_al Memory

6.1 Overlays 189
6.2 Demand Paging 193
6.3 Performance of Demand Paging 198
6.4 Virtual Memory Concepts 200
6.5 Page Replacement Algorithms 205
6.6 Allocation Algorithms 215
6.7 Other Considerations : 225
6.8 Summary 232

Exercises 233

Bibliographic Notes 241

Chapter 7

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

" Chapter 9

" 9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

\ﬂ/‘ v/h S ,,,i

Disk and Drum Sched uling

Physical Characteristics
First-Come-Furst-Served Scl- iuling
Shortest-Seek-Time-First

SCAN :
Selecting a Disk Schedulins: - rithm
Sector Queueing

Summary

Exercises

Bibliographic Notes

Deadlocks

The Deadlock Problem

Deadlock Characterization

Deadlock Prevention

Deadlock Avoidance

Deadlock Detection

Recovery from Deadlock

Combined Approach to I - Handling
Summary ’ ’
Exercises

Bibliographic Notes .

Concurrent Processes

Precedence Graph

Specification

Review of Process Concept

Hierarchy of Processes , -
The Critical Section Probler D % [}
Semaphores VAR VR |
Classical Process Coordinati: + I’roblems
Interprocess Communicatici

Summary

Exercises

Bibliographic Notes

243
247

19

;fSZ
54
i34

L

NV X

Y {
3

)

87
799
297
300
303
319
323
329
339
340
346

PR

Chapter 10

10.1
10.2
10.3
10.4
10.5

Chapter 11

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12

Clhiopter 12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

Concurrent Programming

Motivation ,
Modularization
Synchronization
Concurrent Languages
Summary

Exercises
Bibliographic Notes

Protection

Goals of Protection
Mechanisms and Policies
Domain of Protection

Access Matrix

Implementation of Access Matrix
Dynamic Protection Structures
Revocation

Existing Systems
Language-Based Protection
Protection Problems

Security

Summary

Exercises

Bibliographic Notes

Design Principles

Goals

Mechanisms :nd Policies
Layered Ap)icach
Virtual Machines
Multiprocess.ore.
Implementation

System Gene:siion
Summary

Exercises

Bibliographic “otes

349
350
355
373
380
381
384

387
388
389
390
391
395
400
402
407
412
414
416
416
418

421
422
422
426
428
430
431
433
433

" 435

Chapter 13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11

Chapter 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

Distributed Systems

Motivation

Topology
Communication
System Type

File Systems

Mode of Computation
Event Ordering
Synchronization
Deadlock Handling
Robustness
Summary

Exercises
Bibliographic Notes

Historical Perspective

Atlas

XDS-940

THE

RC 400¢

CTSS

Multics

057360

Unix S
Other Systems

Bibliography

Index

437
439

451
454
456
458
461
465
470
477
478
479

483
484
485
486
487
488
488
490
491

493

527

1

Introduction

An operating system is a program which acts as an interface between a
user of a computer and the computer hardware. The purpose of an
operating system ‘is to provide an environment in which a user may exe-
cute programs. The primary goal of an operating system is thus to make
the computer system convenient to use. A secondary goal is to use the
computer hardware in an efficient way.

To understand what operating systems are, it is necessary to under-
stand how they have developed. In this chapter, we trace the develop-
ment of operating systems from the first hands-on systems to current
multiprogrammed and time-shared systems. As we move through the
various stages, you will see how the components of operating systems
evolved as the natural solution to problems in early computer systems.
Understanding the reasons for operating system developments will give
you an appreciation for what an operating system does and how it does
it. . . ‘

1.1 What is an Operating System?
An important part of almost every computer system is the operating sys-
tem. A computer system can be roughly divided into 4 components (Fig-
ure 1.1):

® hardware,

@ gperating System,

® applications programs,
. ® users.
The hardware provides the basic computing resources. The applications

programs define the utilization of these resources to solve the comput-
ing problems of the users. The operating system controls and

8650032

2 Introduction

!

user user user
1 2 3
L 7

v

Chapter 1

user

compiler assembler text database
editor system

Application Programs

Operating System

Computer
Hardware

Figure 1.1 Abstract view of the components of a computer system

-

i, -4

s

£y
wh oL

Section 1.1 . What is an Operating System? 3

coordinates the use of the hardware among the various application pro-
grams for the users.

An operating system is similar to a government. The basic resources
of a computer system are provided by its hardware, software, and data.
The operating system provides the means for the proper use of these
resources in the operation of the computer system. Like a government,
the operating system performs no useful function by itself. It simply
provides an environment within which other programs can do useful
work.

We can view an operating system as a resource allocator. A computer
system has many resources which may be required to solve a problem:
cpu time, memory space, file storage, input/output (1/0) devices, and so
on. The operating system acts as the manager of these resources and
allocates them to specific programs and users as necessary for their
tasks. Since there may be many, possibly conflicting, requests for
resources, the operating system must decide which requests are allo-
cated resources to operate the computer system fairly and efticiently.

A slightly different view of an operating system focuses on the need
to control the various /O devices and user programs. An operating sys-
tem is a control program. (At least two operating systems incorporate this
view into their names. CP/467 is a Control Program for the IBM 360/67;
CPM, the popular microcomputer operating system, is a Control Pro-
gram for Microcomputers.) A control program controls the execution of
user programs to prevent errors and improper use of the computer. It is
especially concerned with the operation and control of 1/O devices.

In general, however, there is no completely adequate" definition of
an operating system. Operating systems exist because they are a reason-
able way to partition into smaller pieces the problem of creating a usable
computing system. The fundamental goal of computer systems is to exe-
cute user programs and solve user' problems. Towards this goal com-
puter hardware is constructed. Since bare hardware alone is not very
easy to use, apphcahons programs are developed. These various dif-
ferent programs require certain common operations, such as controlling
the I/0 devices. The common functions of controlling and allocating
resources are then brought together into one piece of software: the
operating system.

It is perhaps easier to define operating systems by what they do,
rather than what they are. The primary goal of an operating system is
conventence of the user. Operating systems exist because they are sup-
posed to make it easier to compute with an operating system than
without an operating system. This is particularly clear when you look at
small operating systems for personal computers..

4 Introduction Chapter 1

A secondary goal is efficient operation of the computer system. This
goal is particularly important for large shared multi-user systems. These
systems are typically very expensive, and so it is desirable to make them
as efficient as possible. These two goals, convenience and efficiency, are
-sometimes contradictory. In the past, efficiency considerations often
were considered to be more important. Thus, much of operating system
theory concentrates on optlmal use of computing resources. -

To see what operaiing systems are and what operating systems do,
let us consider how they have developed over the last thirty years. By
tracing that evolution we can identify the common elements of ar
operating system and see how they developed.

Operating systems and compuier architecture have had a great deal
of influence on each other. To facilitate the use of the hardware, operat-
ing systems were developed. As operating systems were designed and
used, it became obvious that changes in the design of the hardware
could simplify the operating system. In this short historical review,
notice how the introduction of new hardware features is the natural
solution to many operating system problems.

1.2 Early -Systems

Initially, there was only computer hardware. Early computers were
(physically) very large machines run from a console. The programmer
would write a program and then operate the program directly from the
operator’'s console. First, the program would be manually loaded into
memory, either from paper tape, the front panel switches or cards. Then
the appropriate-buttons would be pushed to load the starting address
and to start the execution of the program. As the program ran, the
programmer/operator could monitor its execution by the display lights
on the console. If errors developed, the programmer could halt the pro-
apm, examine memory and register contents, and debug the: program
directly from the console. Output was. pnnﬁed, or punched onto paper
tape or cards for later printing. e

An important aspect of this envmmment was its hands-on interac-
tive nature. The programmer himself was the operator. Most systems
used a sign-up or reservation scheme for allocating machine time. If you
wanted to use the computer, you went to the sign-up sheet, looked for
the next convenient free time on the machine; and signed up for.it.

There were, however, certain problems with this approach. Sup-
pose you had signed up for an hour of computer time to run a program
that you were developmg You might run into a particularly nasty bug
and be unable to finish in an hour. ‘i someone had reserved the follow-
ing block of time, you would have to stop, ‘collect whaf you could, and

Section 1.2 Early systems E

return at a later time to continue. On the other hand, if things went real
well, you might finish in 35 minutes. Since you had thought you migh
need the machine longer, you had signed up for an hour, and so th
machine would sit idle for 25 minutes.

As time went on, additional software and hardware were
developed. Card readers, line printers, and magnetic tape became cofn-
monplace. Assemblers, loaders, and linkers were designed to ease the
programming task Libraries of common functions were created. Com-
mon functions, once written in assembly language, could then be copied
into a new program without having to be written again.

The routines which performed input and output were espeaaily
important. Each new I/O device had its own characteristics, requiring
careful programming. One solution to this problem was to write, once, a
subroutine which knew how to drive that device, and simply have
everyone use this subroutine. Such a subroutine is called a device driver.
A device driver knows how the buffers, flags, control bits, and status
bits should be used for a partlcular device. Each dxfferent type of device
has its own driver.

Later, compilers for Fortran, Cobol, and other languages appeared
[Rosen 1967], making the programming task much easier, but the opera-
tion of the computer more complex. To prepare a Fortran program for
execution, for.example, the prpgrammer would first need to load the
Fortran compiler into the computer. The compiler was normally kept on
magnetic tape, so the proper tape would need to be mounted on a tape
drive. The program would be read through the card reader and written
onto another tape. The Fortran compiler produced assembly language
output, which then needed to be assembled. This required mounting
another tape with the assembler: . Finally, the binary object form of the
program would be ready {p execute. It could be loaded into memory and
debugged from the console, as before.

Notice that there could be a significant amount of setup time involved
in the running of a job. Each job consisted of many separate steps: load-
ing the Fortran compiler tape, running the compiler, unloading the com-
piler tape, loading the assembler tape, running the assembler, unloading
the assembler tape, loading the object program, and running the object
program. If an error occurs at any step, you might have to start over at
the beginning, Each job step might involve the loading and unloading of
magnetic tapes, paper tapes, and cards.

1.3 Simple Batch Systems

The job setup time was a real problem. During the time that tapes were
being mounted or the programmer was operating the console, the cpu

