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Preface

Although the theory of thermoelasticity has a long history, its foun-
dations having been laid in the first half of the nineteenth century by
Duhamel and’ Neumann, wide-spread interest in this field did not
develop until the years subsequent to World War Two. There are
good reasons for this sudden and continuing revival of interest. First,
in the field of aeronautics, the high velocities of modern au’craft have
been found to give rise to aerodynamic heatmg, in turn, thls produces
intense thermal stresses and, by lowering the elastic limit, reduces the
strength of the aircraft structure.-Secondly, in the nuclear field, the
extremely high temperatures and temperature gradients ongmatmg in
nuclear reactors influence their design and operatnon Likewise, in the
technology of modern propulsive systems, such as jet -and rocket
engines, the high temperatures associated w1th combustion processes
are the origin of unwelcome thermal stresses. Similar.phenomena are
encountered in the technologies of space vehicles and missiles, in the
mechanics of large steam turbines, and even in shipbuilding, where,
strangely enough, ship fractures are often attributed to thermal stres-
ses of moderate intensities.

The investigations of these, and mmnlar, problems have brought
forth a remarkable number of research papers, both theorencal and
experimental, in which various aspects of thermal stresses in
engineering structures are described. It is noteworthy, however, that
those of but a mere handful of writers have decided to compile and
order the available material, for the purpose of casting it into the form
of a comprehensive exposmon Probably the first of these authors
was H. Parkus, who, in cooperation with E. Melan, published in
1953, a volume on stationary thermal stresses;' this was later com:

'E. Meian and H. Parkus, Thermal Stresses Due to Stationary Temperature Fields (in
German), Springer, Vienna, 1953. A book by N. N. Lébedev (1937), reported by
Russian authors, was never available outside the U.S.S.R.
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Preface .

plemented by two additional, no iess valuable, volumes, one of which
examined transient states.” In the interim, there appeared the pub-
lication of B. E. Gatewood,’ which, like the booklet of D. J. Johns®
(published eight years later), was well adapted to the needs of the
designer. '

In 1960, B. A. Boley and J. H. Weiner gave a profound and
comprehensive exposition of various facets of the theory of ther-
moeleasticity, now considered classic.’ In the same year, W. Nowacki
published, in Polish, the results of his distinguished research of many
years, later translated into English.®* A companion volume on dynamic
problems, by the same author, appeared in print a few years later.’

The list of previous writers apparently ends with the name of A.
D. Kovalenko,® whose book, published in Russian in 1970, includes a
number of interesting examples.’

The present book has its origins in a course of lectures on
thermoelasticity given by the author during a number of years, in the
Department of Mechanical and Aerospace Engineering of the Uni-
versity of Delaware and elsewhere.

It is well known that teaching in the classroom, by the spoken
word, imposes more stringent obligations upon the instructor than
teaching by the written word, that is, by means of a textbook. ‘First,
everything spoken should remain clear to everyone present, including
the least bright and least prepared listeners. Secondly, the reasoning
in classroom communication should proceed in a much more con-
nected manner than that which is required in written communication;

" for statements lacking full motivation or logical gaps in the argument
emerge vividly, raising doubts concerning the soundness of the
development.

Y. Parkus, Transient Thermal Stresses (in German), Springer, Vienna, 1959; H.
Parkus, Thermoelasticity, Blaisdell, Waltham. Mass., 1968.

3B. E. Gatewood, Thermal Stresses with Applications to Airplanes, Missiles, Turbines
" and Nuclear Reactors, McGraw-Hill, New York, 1957.

“D. J. Johns, Thermal Stress Analysis, Pergamon, Oxford, 1965.

’B. A. Boley and J. H. Weiner, Theory of Thermal Stresses, Wiley, New York, 1960.
*W. Nowacki, Thermoelasticity, Pergamon Press, Oxford, 1962.

"W. Nowacki, Dynamic Problems of Thermoelasticity (in Polish), P.W.N, Warsaw,
1966.

!A. D. Kovalenko, Thermoelasticity, Wolters-Noordhoff, Groningen, 1969.

*1t is perhaps not eut of place to mention the notes from the course held in 1972 by 1.
N. Sneddon: The Linear Theory of Thermoelasticity, Intern. Centre of Mech. Sci., publ.
110, Udine, 1974.

xii



Preface

The satisfaction of both these demands is usually not a simple
matter; so it was in the author’s case when, as it usually happens in
the extension courses, the members of his audience ranged from
young students with bachelor's degrees to mature doctors of
philosophy coming from industry in order to broaden or refresh their
formal knowledge, acquired perhaps many years earlier. In such a
situation, it is never clear who knows or who remembers what, and
(usually to the noticeable relief of the audience) it is often advisable
not to anticipate too much erudition on the part of the listeners.
Whether ultimately beneficial or harmful, such an approach was taken
by the author. Naturally, this reflected strongly on the content of the
lectures and, eventually, has greatly influenced the content of this
book, making it rather self-contained and suitabie for independent
study. ‘Although, in this sense, the character of the book is elemen-
tary, the contents of the book are not; and the author would like to
think that it acquaints the reader quite thoroughly with many aspects
of thermoelasticity, affording him a solid grounding upon which he
may proceed to construct his own investigations. Of course, there is
no doubt that experts in the field will ﬁnd some portions of the book
too discursive.

As a rule, each chapter starts with a relatively detailed exposnmn
of the concepts essential for the comprehension of the subsequent
text. The theoretical introductions are -illustrated by one or more
examples, solved in full. References to- the pertinent literature are
given apropos of each formula or statement that (due to limitations on
space) cannot be derived or sufficiently motivated in the text. These
references constitute an integral part of the text and may be of
service to those readers who wish to supplement their study. It is
believed that the emphasis on the fundamentals, rather than on a
(necessarily limited) number of ready- to-use recipes, better prepares
the student for : mdependemly attempting the solution of problems
which he may encounter in future.

~ To facilitate the reading, Chapter 2 gives some rudiments of the
indicial notation, used extensively throughout the book, and includes
a list of formulas either referred to later in the text or hard to find in’
the literature. Those elements of the tensor calculus which are pro-
vrded in Section 2.1 should satisfy the needs of the readers who’
: would like to study all advanced topics of linear’ thermoelasticity.

Chapters 3 through 6 give a compact description of the main
ideas of thermodynamics, heat transfer and elasticity. Chapter 7~
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Preface

discusses the inadequacy of the classical, parabolic, equation -of héat
conduction; Chapter 9 contains a rather detailed analysis of the
temperature field. Certain methods of solution of the differential
equation of heat conduction are given here with an eye toward their
application in the solution of general thermoelastic problems, not
necessarily those of heat conduction alone.

To the investigation of the stress fields and the problem of
solidification are devoted Chapters 8 and 10 through 13. These chap-
ters complete the description of the theoretical foundations of ther-
moelasticity and close the first part of the book.

The second part includes a number of apphcauons of the theory, it
examines thermoelastic equilibrium and stability of bars, plates, and
shells, as well as the influence of cracks. Dynamic problems discussed
include certain of those associated with moving and periodic tem-
perature fields, as well as with thermoelastic vibrations and waves.
The effects of coupling of the mechanical and thefmal fields are
described in Chapter 21, while applications of variational methods are
taken up in Chapter 26. Chapters 22 to 25 touch upon a féw subjects
which, at the present time, probably find no direct applications in
engineering but (at least in the author’s opinion) may be of im-
portance in the not-too-distant future. Because of limited' space, a
number of originally projected and prepared chapters on the varia-
tional methods in "heat conduction, function-space methods, bodies
with temperature-dependent properties, nonlinear thermoelasticity,
and thermoelasticity of micropolar materials could not be included in
the text. The same can be said for numerical methods, although the
book features the solution of a quantity of numerical examples.

Certainly it is true that, in a work of this sort, touching upon a
variety of disciplines within the engineering sciences, there is always
a chance for a slip of the pen or an insidious error to creep in; the
most one can hope is that they are few and vemal the author will be
thankful if they are reported.

The material has been selected from the literature according to
the author’s preference; however, many outstanding contributions
had to be left out. Whenever possible credit has been given to the -
original sources. .

It is a pleasure to acknowledge the help the author has received
from his friends and former students: Dr. Allan Dallas, who read over™
the entire manuscript and suggested many improvements of the text
and style; Dr. Hisaichi Ohnabe, who checked the calculations in the

Xiv



Preface
first portion of the book. My colleagues, Professors M. A. Beatty, A.
C. Eringen, M. D. Greenberg, E. H. Kerner, R. J. Libera, and C. Y.
Yang were kind enough to read and criticize particular chapters of the
book (some not included). Of course, the author alone is responsible -
for the text as it stands.

Thanks also go to Mrs. R. L. Schaffer, for her highly competent
typing, and to Professor D. Teter and Mrs. L. Turner, for the
execution of the drawings accompanying the text.

Grateful acknowledgment is made to several authors and pub-
lishegs for permission to reproduce certain illustrations: Springer-
Verlag, New York (Figs. 1 and 2 from Acta Mechanica, vol. 16, 1973,
pp. 45-64; now Fig. 22.2); Dun-Donnelley Publ. Corp., New York,
and Prof. F. Kreith (Figs. 6.1, 6.4, 10.18 from Principles of Headt
Transfer, 1967; now Figs. 5.2 and 5.3); Prof. R. Muki and Jap. Soc. of
Mech. Eng. (Figs. 1 to 3 and 5 from Bulletin of JISME, vol. 4, 1964, pp.
506-514; now Figs. 19.6 and 19.7); Prof. W. Fiszdon, Editor,
Arch. Mech. Stos.,and P.W.N. (large portions and figures from author’s
papers in vol. 5, pp. 221-235, vol. 7, pp. 247-265, vol. 9, pp. 359-368;
now Fig. 12.1); North-Holland Publ. Co., New York (Table 1 from
Progress in Sol. Mech., vol. 1, 1960, p. 279; now Table 20.2); Dr. J. J.
Jaklitch, Editor, ASME (Fig. 4 from Journ. Appl. Mech., 1969, pp.
763-767; now Fig. 13.2); Editor ZAMP (large portions of author’s
paper in vol. 12, 1961, pp. 132-148); McGraw-Hill Book Co., New
York (Fig. 5.8 from E. R. G. Eckert and R. M. Drake, Analysis of
Heat and Mass Transfer, 1972; Fig. 20 from I. S. Sokolnikoff and R.
M. Redheffer, Mathematics of Physics and Modern Engineering, 1958;
Fig. 14.8 from G. E. Dieter, Jr., Mechanical Metallurgy, 1961; now
Figs. 9.18, 10.5, 17.4c); BSB B. G. Teubner Verlagsges., Leipzig, Fig.
88 on p. 711 (now Fig. 24.1) of Grimsehl, Lehrbuch d. Phys., vol. 2,
Elektromagn. Feld, 16 edition, 1963. ,

Last but not least, I express my gratitude to Professor W. A. Nash
for his friendly encouragement, and to Mrs. Stephanie Venema,
Publisher, for her helpful cooperation.
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Introduction

As clearly indicated by the name itself, thermoelasticity is a branch of
applied mechanics concerned with the effects of heat on the defor-
mation and stresses in solid bodies which are considered to be elastic.
It is, thus, an extension of the conventional theory of isothermal
elasticity to processes in which deformation and stresses are
produced not by mechanical forces alone, but by temperature varia-
tion as well. A typical example of thermal deformation i$ the buckling
of rails, which may result if the narrow gaps between the rails are not
sufficient to allow for their free thermal expansion.

Thermoelastic processes are not totally reversible. For while the
elastic part may be reversed, inasmuch as the deformations caused by
heat are recoverable (at least theoretically) through tooling, the
thermal part may not. This phenomenon owes its existence to the
dissipation of energy taking place during heat transfer, in particular
during heat conduction. That is, heat that spontaneously flows from
hot to cold may not be transported back to its source without an
external intervention, and the original thermal conditions may not be
restored.

The effect of the temperature field on the deformation field is not
a one-way phenomenon. It is an experimental fact that a deformation
of the body produces changes -in its temperature. In other words, a
deformation acts as a source or sink of heat. As a familiar example,
recall that in the standard tensile test the metallic sample at the .
moment of rupture may even be too hot to be touched.

The mechanical and thermal aspects are coupled, and insepar-
able. In fact, this coupling complicates considerably the com-
putational aspect of solving actual thermoelastic problems. Practically
speaking, however, it is generally possible to discount the coupling
and to evaluate the temperature and deformation fields, in this order,
separately. We shall have abundant opportunity to examine these
questions- later. ’ ’



1 Introduction

In spite of coupling between the temperature and deformation,
he-ting is not always accompanied by stress. In this respect ther-
moelasticity differs from elasticity, in which there is no deformation
without stress.

To illustrate, let us imagine that a body that has complete
freedom to expand or contract under the influence of heating is
exposed to a uniform temperature increase (Fig. 1.1). Since all ele-
ments of the body undergo the same deformation there is no reason
why the freedom of an element to deform, such as the element ABCD
in Fig. 1.1a, should be in any way impeded by the neighboring
elements. Due to the absence of internal.constraints, the deformation
of elements, for example of the element ABCD into the element
A’B'C'D’ in Fig. 1.1b, proceeds without generating internal stresses.
The body deforms but remains free of stress. In this process the
internal coherence of the body remains intact since the deformations
are compatible. Indeed, ‘if the strain at each point of the body is the
same, the compatibility equations, which involve second spatial
derivatives of strain components,' become automatically and identic-
ally satisfied. It follows that the stress free deformation does not
produce such unwelcome singularities as gaps, slips or penelratlons of
matter into matter.

However, there is little need to emphasize that, in general, the

747,
Vil 2| s

s Ps [ 7

a. undeformed body

ga | | | =

¢ s'|0’ &' 7 8'

b. - deformed body

Fig. 1.1. A free thermal deformati‘on.

'Compare, e.g., I. S. Sokolnikoff, Mathemancal Theory of Elasticity, McGraw-Hill,
New York, 1956, equations (10.10).
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I Introduction

thermal deformation is not uniform, and the body cannot deform
freely. In such situations the compatibility of deformations may be
preserved only through the development of an adequate system of
stress within the body.

Two particular cases in which a uniform temperature field
produces stresses are worthy of mention: '

(a) Existence of external constraints, as occurs, for example, if
the ends of a beam, or the edges of a plate are sealed within a wall.

(b) Nonhomogeneity of the body, especially of a discontinuous
type. An example of the latter is sketched in Fig. 1.2. Suppose the
rectangular cross-section of a column heated evenly consists of two
materials I and II of different coefficients of thermal linear expansion.
Under the heating, if the elements I and II were disconnected along
the interface AB, the latter would tend to occupy two positions A'B’
and A”B", say. For the body to remain intact, stress must arise along
AB, which induces the segments A’B’ and A"B" to remain together.

Another extreme case involves a nonuniform temperature field,
which does not produce stress. This occurs when the field is sta-
tionary, and the temperature is a linear function of position, and is
independent of whether the body is simply or multiply connected.’
We shall return to this question later on.

The preceding example constitutes, of course, an exception to a
general rule that temperature changes produce. stresses in solid
bodies. Because the source of stress is heat, the stress generated by
the temperature field is called a thermal stress. If the material of the
body in which the latter originates is elastic, the stress is said to be

" thermoelastic. Thermal stresses arising in materials which are in-

N

Fig. 1.2. A discontinuous nonhomogeneity.

In simple terms, a body is multiply connected if it contains cavities or holes.



1 Introduction

elastic are the subject of such disciplines as thermoplasticity and
thermoviscoelasticity.

In the present book we confine ourselves to the study of ther-
moelastic stresses alone. The stress response of bodies to heating
depends on mechanical and thermal properties which, in fact, vary
with the temperature. It is, therefore, of interest to examine the
elastic characteristics, at least for an isotropic body, recorded in the
standard tensile test.

First, it should be noted that the form of the stress-strain diagram
changes markedly with temperature. The lower the temperature the
steeper and narrower the diagram; this means that with a decreasing
temperature materials acquire more and more properties attributed to
brittleness. Hence, Young’s modulus increases, and so does the yield
point; on the other hand, relative elongation diminishes, and tends to
zero as the temperature approaches absolute zero. Not surprisingly,
heating has an opposite effect, and above certain temperatures
materials exhibit so much plasticity or viscosity that their resistance
to external -forces may no longer be evaluated by the theory of
elasticity.

0% 10°Pg
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N . :
020 I&) 200 300 400 500 °C
Fig. 1.3. Mechanical properties versus temperature.



1 Introduction

Figure 1.3 displays the variation of some characteristic properties
of low carbon steel with temperature.® It is seen that with an increase
in temperature, Young’s modulus (E) and stress at the proportional
limit (7xop) decrease, while the relative elongation at rupture (e
initially decreases (up to about 250°C), and -then increases rapidly.
Actually, with the temperature approaching the melting point, the
stress-strain diagram sinks down and flattens, more and more
approaching the mode of zero stress and very large strain. Poisson’s
ratio (») for steels increases from about 0.28 at room temperature to
almost 0.5 at elevated temperatures, that is to the theoretical limit for
isotropic materials remaining elastic.*

Examples of materials, which violate the common rule ‘of
decreasing Young’s modulus with an increasing temperature, include
certain types of graphite specially prepared.’ For these materials,
Young’s modulus is equal to about 79 x 10 Pa at room temperature
and increases by almost 40% at 2000°C. They may also be considered
elastic, at least for small strains, up to the temperatures as high as
about 2200°C (compared with a sublimation temperature of about
3700°C).

Generally speaking, the variation of Young’s modulus or of the
modulus of shear (denoted by G or u) with temperature may be
approximated by a parabolic law such as _ _

r = ul- 6%, (1.1
where B is an experimental (positive) coefficient, and @ the tem-
perature increment above the ambient temperature.

It is clear that because of the sensitivity of the mechanical
characteristics to the temperature, the properties of materials subject
to nonuniform temperature fields seem to vary from point to point:
materials behave as though they are inhomogeneous. This fact
becomes a source of computational difficulties since the coefficients in
thermoelastic governing equations become functions of position. It is
recalled in this connection that the solution of partial differential
equations with variable coefficients is an mtrlcate chapter of the
theory of differential equations.

3Data given in pascals, where 1 kgffcm?® = 9.807 X 10* Pa and 1 psi = 6.895 x 10° Pa.

“F. L. Everett and J. Miklowitz, Poisson’s ratio at high temperatures, J. Appl. Phys Ly
vol, 15, 1944, p. 592.

SF. Faris, L. Green, Jr., and G. Smith, The thermal dependence of the elastic moduli
of polycrystalline graphite, J. Appl. Phys., vol. 21, 1951, p. 89.



