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BRAIN MODELS

VIEWS OF THE BRAIN
Early History (42, 54]

Up to this day we know less about the way our brain'works than about the
functioning of other organs in our body. But this has not inhibited numerous
attempts at modeling throughout the ages, which have sometimes been
interesting and. sometimes amusing. Brain models have been created on the
basis of discoveries in anatomy, physiology, and behgvior, on the basis of
natural or man-made analogs, and on the basis of what one may call inner
experience. o .

The following is an example of an active versus a passive view of perception
based, perhaps, on some differing aspects of inner experience. In the times of
the ancient Greeks and‘even during the period when the Arab civilization
flourished, but before light, optics, and visual anatomy and physiology were
properly understood, there were opposing views ~of the visual process.
According to one, ‘‘rays’ emanated from the eyes to perceive the objects in
the external world, while according to another, such “‘rays’’ entered the eyes
from outside to carry the perception to the observer. Even today the active and
passive aspects of perception are subjects of debate among philosophers and
psychologists. ‘ .

The Greeks believed in an essence of man, or *‘soul,”” which could embrace
intellect and sensation. Philosophers like Philolaos (ca. 400 B.c.) and Aristotle
(384-322 B.c.) regarded the heart rather than the brain as the supreme center of
the ‘‘soul,”” since the brain cannot ‘‘feel.” According to Aristotle, the brain
was accessory to the heart. But Alcmaeon (sixth century B.C.), who is said to
have been the, first to dissect human bodies, knew that the brain was involved
in sensation, movement, and thought, and he believed the brain to be the seat
of the *‘ruling soul.”’ '

As usual, the physicians and dissectionists related their views on function
more closely to the structures they observed, Hippocrates (fifth to fourth
centuries B.C.) considered the cause of epilepsy to be located in the brain.
Galen’s views (second century A.D.) are of some interest for theit detail and
because they exerted a continuing influence through the Dark Ages and after.
Based on his knowledge of body fluids and particularly on the ‘cerebrospinal
fluid that flows through the ventricles in the brain, Galen believed that man
- was permeated with a “‘vital spirit” originating in the liver and pumped to the
brain by the heart. In the brain the ‘‘vital spirit’’ was refined into an ‘‘animal
spirit”” and from there it was pumped throughout the body by the ventricles. A
‘‘visual spirit’’ was pumped to the eyes, where it met the outer light and then
flowed back to the brain to complete the visual act. Vision was the most
important sensory modality and the gyes were placed optimally for sight. Thus
the brain, which was the seat of the reasoning soul, was placed close to the

(1



i2]
BRAIN MODELS

eyés, and it followed that the other sense organs like ears and nose had to be
in the head. Galen distinguished three primary functions of the brain:
perception, thought, and memory. Some thirteen centuries later Leonardo da
Vinci, whose own knowledge of anatomy was extensive, nevertheless wrongly
sketched the brain with three bulbous spaces, one after the other, where
perception, thought, and memory were localized. Thus was the longevity of
Galen'’s ideas!

Beginnings of Present-Day Anatomy and Physiology [42, 54]

Ancient science and medieval superstition began to give way when Vesalius
founded a systematic, scientific anatomy in the sixteenth century. But advance
was slow. The beginnings of modern physiology hardly got under way until the
eighteenth century with Haller (1708-1777), Gall (1758-1828), and later
Flourens (1794-1867). There developed a controversy which is still with us
today. One school held that different functions were localized in different parts
of the brain; the other school maintained that the brain is “eqmpotenua *? that
it acts as a single, integrated organ. Gall was an enthusiastic proponent of
localization. ‘‘Psychic’’ functions like instinct of procreation, religiosity, and
avarice were assigned by Gall to various cerebral loci. The pseudoscience of
phrenology later based itself on Gall’s teachings. On the other hand, Haller and
Flourens, from their experimental and clinical observations, concluded that in
spite of some localization the brain was an equipotential organ. Flourens found
that cerebral ablations seemed to produce disturbances in proportion to the
mass extirpated. However, the observational Qld experimental techniques of
the time were rather crude and the conclusions cannot be upheld on the basis
of more refined tests.

Major advances were made in the nineteenth-century through the discovery

of various brain centers which were involved in specific functions. As
examples, one may mention Broca’'s speech area named after the discoverer,
Fritsch and Hitzig’s discovery of a somatomotor area, and Munk’s discovery of
the visual cortex.

The Greek’s quest for the ‘‘ruling soul’’ was pursued in different ways. Thus
in the seventeenth century Descartes proposed that the pineal body was the
‘seat of the essence of mind. According to Descartes, such a locus would have
to occupy a central position in the brain, and this made the pmeal body an
ideal candldate

Psychophysiolegy and Neural Machinery

In the late nineteenth and our own twentieth century the pace of progress
has greatly accelerated. Hughlmgs Jackson, (1835-1911) came to the conclusion
that epileptic fits arise in local foci in the brain as a sudden and excessive
discharge of nerve cells. H¢ was much concerned with the multiple representa-
tion of function at different levels of the nervous system; namely, -at the
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elementary spinal level, at an intermediate motorsensory level in the brain, and
at the highest level of the frontal cortex. Somewhat later, Penfield and his
collaborators carried out extensive investigations during the course of their
neurosurgical work on epileptics. They identified numerous areas of the
cerebral cortex associated with various functions: motor, sensory, speech,
auditory, and visual memory. A well-known example of their work, illustrated
in Fig. 1, is the finding that the whole body surface and body parts are mapped
onto the ‘‘somatosensory’” cortex and the primary ‘“‘motor’’ cortex, respec-
tively. This was also the time of Pavlov's (1849-1936) famous behavioral
experiments on conditioned reflexes (50]. Paviov’s appryach has become
dominant in Russia where attempts are made to reduce all brain activity to a
superposition of reflex mechanisms [42, 61]. Sherrington (1857-1952) was
interested in the integrative action of the nervous system [64]. He examined a
number of phenomena in great detail including the recipracal activity of agonist
and antagonist muscle groups, sensory facilitation between distant body parts,
and central inhibition. He postulated that neural interactions were mediated
through physical-chemical changes at the junctions between nerve cells, which
he called ‘‘synapses.”” The existence of separate nerve cells was not, however.
universally accepted. Some thought that the whole nervous system consisted of

Fig. 1. Somatotopic projections: (a) primary sensory cortex; (b) motorsensory cortex.
Sizes of body parts and lengths of bars indicate extent and location of cortical areas
whose stimulation evoked responses in the corresponding body parts [51}.
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a continuous netlike web. It was not until Ramon y Cajal (1852-1934) showed
by his remarkable and detailed microscopic investigations that there were
indeed separate cellular entities that the neuron came to be universally
regarded as the basic cellular unit of the nervous system [8].

Through the work of Pavlov, Sherrington, Cajal, and others there began to
emerge the relationships between structure and function, between behavior and
neural machinery. Further investigations of these relationships have continued
. to this day, where one may mention among many examples in more recent
times the work of J. Z. Young and his group on the behavior, anatomy, and
physiology of octopus [71]; numerous studies on arthropods such as the work
of W. Reichardt’s group oriented toward systems analysis [70]; and the work
on the neuronal ‘‘machinery”” of the cerebellum by Eccles, Ito, and
Szentagothay [19]. ‘ ' : "

Wherever the seat of the ‘“‘soul’’ may be, present scientific investigations of
brain structure and function with their associated behavioral manifestations are
restricted to those aspects which can be described in terms of physical and
chemical parameters.

NEURON MODELS

Models of ¢he brain must necessarily embrace models of neurons and neural
activity. We know that neurons, like most cells, maintain a negative electric
potential inside the cell with respect to the outside, and that unlike other cells,
neurons respond to stimulation with changes of potential. It was Galvani who
discovered ‘‘animal electricity’’ toward the end of the eighteenth century, and
Nermnst. (1864-1941) showed that differences of ionic concentration on two sides
of a semipermeable membrane were accompanied by differences of potential.
In the 1920s Adrian and others began investigations on the transmission of
waves of electric potential in nerve trunks. It was realized that neurons can
transmit changes of potential in the form of “‘impulses,’”” and that the
generation and transmission of these impulses was related to ionic exchanges
across the cell membrane. The detailed mechanisms were described by
Hodgkin and Huxley in 1952 [27].

Neurons are distinguished from other cells not only by their electrical
activity but also by their shape. Long fibers project from the cell body and
conduct the electric signals from and to other neurons. The output signals of a
neuron usually consist of one or more brief voltage pulses which travel with
constant amplitude and constant speed along the ‘‘axon,” one of the fibers
projecting from the cell body. When this signal reaches a ‘‘synapse”’ it is
-transmitted to an adjoining neuron, generally through a chemical mediator. In
addition to the axon, a neuron has a number of other fibers projecting from-the
cell body. These are the ‘‘dendrites,”” which may be considered as the input
lines. Synapses are found mostly on dendrites, but also on the cell body and
axon. Unlike the axonal signal, the signals transmitted by the dendrites usually -
decay in amplitude as they are propagated along the fiber, rather like an
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elexctric disturbance in a leaky csble. The synaptic inputs may be excitatory or
inhibitory. They are summated and conducted by the dendrites toward the cell
body. When a certain excitatory threshold level is exceeded, an ‘‘action
potential’’ is set off. This is the brief voltage pulse which travels down the
axon. The cell thus balances excitation against inhibition, and the output is
determined by this balance as well as by the internal state of the cell.

The negative internal potential in the resting state of the cell is maintained
primarily by differences of concentration of sodium and potassium ions on the
two sides of the cell membrane. In the resting state the cell is relatively
permeable to potassium but relatively impermeable to sodium which is
constantly pumped out of the cell as fast as it leaks in. Changes of potential
and departures from the resting state can be brought about by selective
changes in the ionic permeabilities of the membrane:;, which lead to an
exchange of ions across the cell membrane. Thus the interior of the cell can be
depolarized (i.e., it becomes less negative with respect to the outside) or
hyperpolarized (more negative with respect to the outside), depending on the
prevailing ionic concentrations and depending on which ions are made to flow
across the membrane. The action potential is a depolarization which is set off
by an initial, depolarizing membrane potential above the threshold for
excitation. It is this initial potential which triggers a change of permeability,
first for sodium and then for potassium. On the other hand, at ‘‘synapses’’
where transmission of the signal is most frequently mediated by chemical
transmitters, the latter may alter the membrane permeabilities in a variety of
ways, depending on the transmitter and on the properties of the target
me:mbrane. As a result, the adjoining membrane cangbe either depolarized or -
hyperpolarized [17, 31], depending on whether the synapse is excitatory or
inhibitory, respectively. .

The Hill-Rashevsky Model :

In the 1930s, when the mechanisms for generating and transmitting neural
signals were not as well understood as they are today, A. V. Hill and N.
Rashevsky independently proposed equivalent models which contained two
parameters, one excitatory or activating, the other inhibitory or inactivating
[25, 57). The balance of activation and inactivation could mimick the changes
of potential which had been observed in nerve as a result of stimulation.
Rashevsky’s model is contained in the pair of equations: )

deldt = KI — k(e — ¢)
djidt = MI — m(j — j,)

€ and j are the excitatory and inhibitory parameters, respectively, I is a current
stimulus applied to the nerve, and K, k, M, m, ¢, and j, are constants. Various
experimental findings could be simulated with the aid of these equations. For
example, it was known that a certain threshold quantity of steady current has
- to be delivered in order to produce excitation. The stronger the current, the
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shorter is the required time of application, but the relationship between time
and current is nonlinear. The Rashevsky-Hill equations can be fitted to these
data, as they can also be fitted to subthreshold responses of nerve. In addition,
Rashevsky attempted an analysis of nerve conduction, but the data available to
him were too meager for any- reliable conclusions. The Rashevsky-Hill model
has been superceded by the much more powerful and. precise model of
tlodgkin and Huxley.

The McCulloch-Pitts Model

A model which has exerted considerable influence in theoretical studies is
due to McCulloch and Pitts [43]. Since a neuron has a number of fibers some
of which, the dendrites, can be considered as input lines and others, the axon,
can be considered as the output line, and since a certain excitatory threshold
has to be exceeded before an output is produced, McCulloch and Pitts modeled
the neuron as a threshold element. This is shown in Fig. 2. There are a number
of excitatory and inhibitory input lines and one output line. Any line can be
either active or inactive. When the excitation exceeds inhibition by the
threshold quantity 4, an output is produced. The McCulloch-Pitts model is a
digital model. That is, activity is in the form of a pulse and time is quantized in
discrete intervals. In each interval the sum of the excitatory and inhibitory
inputs is formed and the output is produced after a delay of one time interval.
The activity on an excitatory line may be represented by +1 and on an
inhibitory ‘line by — 1. Inactivity is represented by 0. It can be shown that
threshold elements of this type can perform logical operations. This is
illustrated for conjunction, disjunction, and negation in Fig. 3. Thus a logical
calculus can be used to analyze networks of such elements. A simple network
is shown in Fig. 4. It corresponds to the proposition a A\ B\/ a A B. Its
interest with regard to neural modeling is that it represents a contrast detector.
For, as can easily be shown, an output will occur if and only if « or 8, but not
both, receive a stimulus. Thus it might represent a network for responding
“‘visually’’ to a light-dark boundary, or by ‘‘teuch’ to the edge of a solid
object, or through some other sensory process to the presence of a contrast.

Numerous other examples could be cited. Suffice it to mention that von
Neumann [68] used the McCulloch-Pitts model in a classic analysis of

Inputs

Excitation
Output

Inhibition { ——

Fig. 2. A threshold element models the McCulloch-Pitts ‘‘neuron’’ [34].
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Fig. 3. McCuIloch—Piits “‘neurons’’ performing basic logic operations [34].

‘“‘probabilistic logic™” in relation to automata theory. He showed how reliability
of operation could be attained through randomization of input lines in a
“‘restoring unit’’ and through the duplication or ‘‘multiplexing’ of lines. His
results are of interest to brain theory for they demonstrate, among other things,
a possible functional significance for a random connectivity.

Stochastic Models

Like any biological unit, a neuron does not operate with unfailing regularity
like a digital clock. The internal state of a neuron is subject to some variability
which affects the output and hence also the input to other neurons. In addition, -.
there may be transmission fluctuations both in the input and the output. Thus a .
statistical description of neural activity is called for. If it were possible to give
such a description in sufficient detail, one might be able to separaté the
contributions of input and internal state to the fluctuations and shed further
light on the generation and transmission of nerve impulses. Unfortunately this
is not yet the case at present.

In modeling, one has to distinguish between a maintained discharge or

Fig. 4. A network of threshold units that performs contrast detection {34].
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spontaneous activity on the one hand and activity due to stimulation on the
other hand. It is usually found that the variability of neural discharges
decreases upon stimulation. Maintained activity may be due to a variety of
causes, such as a regular input source, or to internal ‘‘noise,”” or to the
spontaneous presynaptic release of transmitter in the absence of stimulation.
The occurrence of an input can sometimes be described on a priori grounds by
a Poisson distribution or by a Gaussian distribution. For the Poisson
distribution, the probability that n input events take place in time ¢ is (pr)*
exp{—pt/n!), where p is the mean input rate and an ‘‘event’’ is the occurrence
of a postsynaptic potential. Under suitable conditions, as the number of events
increases, the discrete Poisson distribution tends to the continuous Gaussian
distribution with probability density exp[—(x — m)*20%/\/2mo, where x is the
random variable, m is the mean, and o is the standard deviation. Well-known
examples of these two distributions occur at the neuromuscular end plate [5,
31j. This is a specialized junction between a motor neuron and a muscle fiber.
When the action potential in the motor neuron reaches the end plate, a
transmitter is released and initiates contraction of the muscle fiber. However,
there is also a spontaneous release of transmitter in the absence of nerve
impulses. it is found that the transmitter is released in certain sized ‘“‘packets.”’
The size of these packets, from the observations of spontaneous potentials, can
be described by a Gaussian distribution, while the number of packets released
by a nerve impulse can be described by a Poisson distribution. :

Another example to which a stochastic treatment has been applied is the
generation of nerve impulses taking into account excitation and inhibition, the
variable delays between stimulus and response, and possible fluctuations in
threshold. A simple model will illustrate how some of the variables enter the
calculations. Suppose there are excitatory and inhibitory inputs which are
transmitted along the dendrites to the axon hillock, the region on the axon
where an action potential is initiated. Let € and ¢ be the strengths of the
excitatory and inhibitory signals, respectively, at the axon hillock. Let Pe and p,
be the probabilities of occurrence of excitation and inhibition, respectively.
Due to the leaky properties of the neural membrane, excitation and inhibition
both decay. Suppose the decay is exponential with a time constant r. Then,
starting from zero depolarization at time 0, the depolarization of the axon
hillock at time ¢ will be '

' .
f (epe — p) exp[—(t — t)/7ldt, = (ep. — p)7[1 — exp (—t/7)]
0

If a threshold depolarization h is required to initiate an action potential, it
follows from the last equation that the expected firing time is

tn = —7In[1— hr(ep. — p)]

More complex models have been investigated, which include internal noise and
a resetting of the membrane potential to the resting level after each spike.
When the excitatory and inhibitory inputs occur at random, one may use the
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Probabiflity p (x)

*a Response X

Fig. 5. Probability distributions for the depolarization of a neuron due to noise (N) and
to signal and noise (SN). The threshold x, is set so that the neuron fires when the (SN)
probability is greater than the (N) probability [34].

analogy of a random walk with an absorbing barrier which is well known in the
statistical literature. The ‘‘random walk’’ corresponds to the random occurr-
ence and summation of synaptic inputs, and the ‘‘absorbing barrier” corre-
sponds to the threshold at which the membrane potential is suddenly amplified
and then reset to zero. As a continuous approximation, one may model the
random walk process by analogy with diffusion. The probabilistic diffusion
equation has been used extensively in the physical sciences and more recently
also in modeling neuron firing statistics (for reviews see Refs. 22 and 48; see
also Refs. 21 and 29).

As a consequence of the vanability of neuronal activity and due to the
presence of a threshold, a neuron can be viewed as a statistical decision
element [34]. This is illustrated in Fig. 5 where the curve marked N for
‘‘noise’’ denotes the probability distribution for membrane depolarization in-the
absence of a stimulus; the curve marked SN denotes the probability
distribution of membrane depolarization when a signal as well as ‘‘noise’’ is
present. These depolarizations do not take into account impulse firing. But now
x4 is set as a threshold level for firimg. In the case of Fig. 5, the threshold
would serve to distinguish signals from noise on the basis of a greater
probability: to the right of x,, SN has a greater probability than N and.the cell
would fire. Other criteria are possnble however, and would lead to different
values for x,.

N

The Work of Hodgkin and Huxiey, Eccles and Katz

We recall that the action potential is propagated along the axon with constant
speed and constant amplitude. At any point on the membrane the shape of the
action potential as a function of time is illustrated in Fig. 6 on the curve
marked ¢. The ordinate is read from the scale marked mV and measures the
potential above the resting level which is taken as zero. If this curve is turned
left to right and slid along the x-axis at constant speed, it demonstrates how the
potential wave propagates along the fiber. Since it §§ known that the nerve
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Fig. 6. Numerical solution of Hodgkin-Huxley equation showing components Gy,, Gx
of membrane conductance G (in thousandths of reclprocal ohms per square centimeter) -
during propagated action potential ¢ [27].

membrane is permeable to various ions and electric current, one might expect a-
potential wave which disturbs the steady state to be attenuated as it
propagates. This would be the case in most dendrites which act like leaky
cables. The fact that the action potential is transmitted with constant amplitude
suggests that there is a regenerative mechanism.

As mentioned earlier, the differences of potential across the membrane.
follow differences of ionic concentration and pérmeability. Hodgkin and
Huxley showed that ienic exchanges are involved in the propagation of the
action potential. The ions.involved are primarily sodium and potassium, and in
addition there are chloride and some other ions which leak passively through
the membrane. In the resting state the ratios of sodium and potassium
"concentrations inside and outside a squid giant axon are about 1:10 and 30:1,
respectively. Any sodium that leaks into the cell is actively pumped out and
the membrane is relatively impermeable to sodium. But potassium can move
across the membrane much more freely. The resting potentnal is thus close to
the Nernst diffusion potential for potassium, which is about —77 mV in the
squid giant axon. When the axonal membrane is-depolirized by a certain
subthreshold amount, say 5 mV, the depolarization propagates along the fiber
and is attenuated in the process as in a leaky cable. But if the depolarization
exceeds the threshold value, then instead it is suddenly amplified (for example
to a pulse of some 90 or 100 mV in the squid giant axon) and then returns again
to its original value as shown in Fig. 6. Working mostly on the squid giant
axon, Hodgkin and Huxley [27] showed that the amplification of the potential
and its subsequent return to the resting value were due to accompanying
changes of the membrane conductances for sodium and potassium. These
changes are shown on Fig. 6. Gy, is the time course of the sodium
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Fig. 7. Potentials and currents in a length of cylindrical fiber {34].

conductance, G that of potassium, and G is the net membrane conductance.
When the threshold depolarization is reached, the sodium conductance
increases rapidly and -<sodium ions rush into the cell, thus moving the
membrane potential toward the sodium equilibrium potential, which is about 50
mV in the squid axon. Then the sodium conductance is inactivated and the
potassium conductance. begins to rise. The membrane potential moves back
toward the potassium equilibrium potential and conductances and potential
settle back to the original state.

The potentials and currents in a segment of membrane are illustrated in Fig.
7. ¢ and ¢y are the external and internal potentials, respectively, i, and i; are
the external and internal currents, and i, is the current flowing across the
membrane. The membrane has a fairly constant capacitance, typically | uF/
cm?®. Hodgkin and Huxley modeled a membrane patch by the equivalent circuit
shown in Fig. 8(a). C,, represents the membrane capacitance and there are

Outside

¥
Membrane ”’I“‘ . r o+ o
potential —————°m 'K Na 1% o}

diffirence T ¢K+__._I__¢NO+—J—¢CL_

(a) Inside
Outside ] Outside
R R
R, Re
-I, +I . +I
T ¢l T ¢f ¢E i I ¢r
Inside 7 Inside
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Fig. 8. (a): Membrane equivalent circuit [34]. (b) and (c): Simplified models of
postsynaptic membrane [34].



