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Foreword

The papers in this volume were presented at the 24th Annual Symposium on Foun-
dations of Computer Science, held on November 7-9, 1983, in Tucson,
Arizona. The symposium was sponsored by the IEEE Computer Society Tech-
nical Committee for Mathematical Foundations of Computing.

These 60 papers were selected on June 30-July 1, 1983, at a meeting of the full
program committee, from 160 extended abstracts submitted in response to the call for
papers. The selection was based on perceived originality, quality, and relevance to
theoretical computer science. The submissions were not refereed, and many of them
represent preliminary reports on continuing research. It is anticipated that most of
these papers will appear, in more polished and complete form, in scientific journals.

The program committee wishes to thank all who submitted papers for con-
sideration.
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SOLVING LOW-DENSITY SUBSET SUM PROBLEMS

J. C. Lagarias
A. M. Odlyzko

Bell Laboratories
Murray Hill, New Jersey 07974

Abstract. The subset sum problem is to decide whether
or not the 0-1 integer programming problem

n
Fax;=M; al x; =0 or I;

i=]

has a solution, where the a; and M are given positive
integers. This problem is NP-complete, and the difficulty
of solving it is the basis of public key cryptosystems of
knapsack type. We propose an algorithm which when
given an instance of the subset sum problem searches for a
solution. This algorithm always halts in polynomial time,
but does not always find a solution when one exists. It
converts the problem to one of finding a particular short
vector v in a lattice, and then uses a lattice basis reduction
algorithm due to A. K. Lenstra, H. W. Lenstra, Jr,, and L.
Lovdsz to attempt to find v. We analyze the performance
of the proposed algorithm. Let the density d of a subset

n . Then for

b = Toz.(max a.)
sum problem be defined by d log, (max a;)
I

"almost all” problems of density d < .645 the vector v we
are searching for is the shortest nonzero vector in the
lattice. We prove that for "almost all” problems of density

d < 1 the lattice basis reduction algorithm locates v.
n

Extensive computational tests of the algorithm suggest that

it works for densities d < d_(n), where d.(n) is a cutoff

value that is substantially larger than -'1!— This method

gives a polynomial time attack on knapsack public key
cryptosystems that can be expected to break them if they
transmit information at rates below d_(n), as n — .

1. Introduction

The subset sum problem is a well-known NP-complete
set recognition problem [8, p. 226), which is: given a set
A ={a;: 1 <i < n} of positive integers and a positive
integer M, recognize when some subset of 4 has sum
equal to a given integer M. We consider the related NP-
hard algorithmic problem: find a feasible solution to the
0-1 integer programming problem

n
> ax;=M; all x; =0 or 1; (1.1)

i=l
when one exists.

0272-5428/83/0000/000150'1.00 © 1983 IEEE

"Several proposed public ‘key -cryptosystems, -called
knapsack public key cryptosystems, are based on this
problem [12,15,18]. Such cryptosystems give a set .of
weights {g;: 1 <i € n} as public information. A
plaintext message consisting of a 0-1 vector (e,,..., €,) is
encrypted using (1.1), the integer M being the ciphertext.
The problem of decrypting an encrypted message M is
thus an instance of (1.1). In such cryptosystems the
weights-{a;: 1 < i < n) are chosen in such a way that
(1.1) can be easily solved if certain secret information,
called a trapdoor, is known. In particular, the sets of
weights {a;: 1 < i < n} used in such cryptosystems forms
a very special subclass of subset sum problems (1.1). In
1982 Adi Shamir [18] announced a method for breaking
the simplest such public key cryptosystem, the basic
Merkle-Hellman cryptosystem. Since then several attacks
on more complicated knapsack cryptosystems have been
proposed [1,16]. These attacks are all based on the idea of
recovering the trapdoor information concealed in the
weights {a;: 1 < i < n}.

In this paper we propose a simple method for directly
locating a feasible solution to (1.1). Let a = (a,,..., a,).
The method consists of transforming (1.1) to the problem
of finding a particular short vector e in an integer lattice
L = L(a, M). Then we apply a lattice basis reduction
algorithm to produce a reduced basis of the lattice. This
algorithm is due to A. K. Lenstra, H. W. Lenstra, Jr. and
L. Lovédsz [13]; we call it the L3 algorithm. The method
succeeds if +e appears in the reduced basis; a solution to
(1.1) follows immediately from e.

"Since the problem (1.1) is NP-hard, our method
cannot be expected to always succeed. We analyze the
circumstances under which it can be expected to work.
We define the density dfa) of a set of weights
a = (a,,.., a,) by

d@) = ———
w log,(maxa;)
!

In terms of knapsack public-key cryptosystems, 4 (a) is an
approximate measure of the information rate at which bits
are transmitted, i.e.,

) = # bits in plaintext message

average # bits in ciphertext message




Our main result is a performance analysis of our method
which shows that it succeeds for "low-density” subset sum
problems as follows.

(1) For ‘"almost all® subset sum problems with
d{(a) < .645, the vector e is the shortest non-zero vector in
the lattice L = L(a, M). (Theorem 3.3)

(2) For "almost all” solvable subset sum problems with

n weights having d(a) < (1—¢(log, i;—)" %, for any

tixed ¢ > 0, the method finds a solution. (Theorem 3.5
and the remark following its proof.)

We believe that the first result is essentially best
possible in the sense that it is no longer true when .645 is
replaced by .646. (Our belief is based on heuristic
arguments which we describe in Section 5.)

The second result is weaker than what we believe to be
true. The reason for this is as follows. The L3 algorithm
is not guaranteed to produce the shortest nonzero vector
Xmin in & lattice L C Z", but only a relatively short vector.
To prove that the algorithm succeeds on "almost all®
problems with n weights having  density

d(a) < (1—e(log, i;--)"’"—'l'- we use a worst-case bound on

the length of the shortest vector found by the L3 algorithm
(Proposition 2.1). Empirical experience with the L3
‘algorithm suggests that it wusually finds considerably
shorter vectors than those guaranteed by this bound.
Computational evidence suggests that the algorithm.
succeeds on "almost all* problems with. n items for which
d(a) < d (n) where d.(n) is a cutoff value that slowly
tends to 0 as n — oo, and which is substantially larger

than (log, -‘-;—)"'-:‘—. We do not have enough data to make

a reasonable guess on the behavior of d,(n), but it seems
likely that d.(n) — 0 as n — o. See Section 4 for more
details.

The algorithm we present uses the L} algorithm
because it is currently the only known algorithm for
tinding short vectors in a lattice which has been rigorously
proved both to have a polynomial running time and to find
reasonably short vectors in a lattice. One could use
instead in our algorithm modifications of other algorithms
for finding short vectors in a lattice or for finding good
multidimensional Diophantine approximations such as
those described in [2,3,6,7); these might perform well in
practice.

What are the consequences of these results for
breaking knapsack-type public key cryptosystems? First,
the empirical evidence implies that this method will very
likely break nearly all knapsack cryptosystems for which
.d(a) < d.(n) in polynomial time. In particular, it may
well break "almost all® ultimate knapsack cryptosystems of

Shamir [18] since these cryptosystems have
d@) < Iogl pe Second, our method complements nicely
s .

the existing attacks on knapsack cryptosystems which are
based on recovering trapdoor information. When the
information rate is low, the method described here should
succeed. When the information rate is high, the trapdoor
information is more difficult to conceal, and attacks based

on finding the trapdoor are more likely to succeed, see
(11l

E. Brickell {5] has developed another method to solve
general subset sum problems, which can be expected to
break most "low density” problems. Although his method
is superficially dissimilar to our method, its success seems
1o us to be based on the same basic principles. His
method is more complicated and seems difficult to analyze
in detail theoretically. Some further remarks on Brickell’s
algorithm are made in Section 5.

2. The Method

Before describing the method, we state the basic facts
about integer lattices and the L? algorithmh which we shall
use. :

We present the vector space R" using row vectors, and
define the length (i.e. Euclidean norm) Wil of a vector
ve (v..,v,) by

e = 3 v @
i=]

An integer lattice L is an additive subgroup of Z" which
contains n linearly independent vectors over R". An
(ordered) basis lv,,..., v,] of a lattice L is a set of elements
of L such that L = Zv; © Zv, ® ... ® Zv,. We represent
an ordered basis of a lattice L by the nxn basis matrix

"
V=1
] 'll
whose rows are the basis vectors. If V| and V, are basis
matrices of the same lattice L, then there is a unimodular
matrix U € GL(n, Z) such that

UV| - Vz.

Conversely, if V is. a basis matrix of L and
U € GL(n, Z), then UV is a basis matrix of L. A. K.
Lenstra, H. W. Lenstra, Jr.,, and L. Lovdsz define the
notion of a reduced (ordered) basis [v, ..., v,] of a lattice
L. For the purpose of this paper we do not need to know
the precise definition of a reduced basis (it is given in
Appendix A); we need only know that any reduced basis
contains a relatively short vector {13, Prop. 1.11].
Proposition 2.1  Let Iv,,...,v,} be a reduced basis of a
lattice L. Then

livy? € 2*~! min Hxi? . Q.2)
x€L
x40

In fact, all of the basis vectors in a reduced basis tend to
be short, cf. [13, Prop. 1.12); we take advantage of this in
our method. A. K. Lenstra, H. W. Lenstra, Jr. and L.
Lovédsz [13] present an algorithm, which we call the L°-
algorithm, which when given a basis [v,,..., v,] of a lattice



L as input produces a reduced basis {w,...., w,] as output.
They give the following polynomial worst-case running
time bound for its performance {13, Prop. 1.26].

Proposition 2.2 Let Iv,,..., v,] be a basis of an integer
lattice L such that W;* < B for 1 £ i € n. Then the
L? algorithm produces a reduced basis lw,,...,w,) for L
using at most O(n* log B) arithmetic operations, and the
integers on which these operations are performed have
binary length at most O(n log B).

If we use the classical algorithms for addition,
subtraction, multiplication and division, this algorithm has
a guaranteed running time of O(n®(log B)3) bit
operations. There are some practical speed-ups possible
for this algorithm so that it seems possible in practice to
find a reduced basis in O(n(log B)®) bit operations, cf.
[9], [16], and Section 4.

Now we can describe the method. We suppose we are
given a vector a = (a,..., a,) of positive integers and an
integer M. Our object is to find a feasible solution to:

n
Sax;=M; allx; =0 or 1. .3)
=

We need only consider the case that 1 £ M < é a;.
i=l
We use the following algorithm.

Algorithm SV (SV = Short Vector).

(1) Take the following vectors as a basis [b,,..., b,,] for
an n+1 dimensional integer lattice L = L{(a, M):

b; = (1,0,...,0,—a,)
b, = (0.1,...,0,—a,)

(pX))
b, = (0,0.,...,1,~a,)

bysr = (0,0,..0, M) .

(2) Find a reduced basis Ibj,..., b,,] of L using the
L3-algorithm.

(3)  Check if any b; = (b, ..., b p41) has all hj =0 or
A for some fixed A for 1 < j < n. For any such b;.

check if x; = -){- b’j for 1 € j < n gives a solution
to (2.3), and if so, halt. Otherwise continue.

@ Repeat" steps 1 through 3 with M replaced by
M'= 3 a; — M. Then halt.

im]

If Algorithm SV produces a solution to (1) we say it
succeeds; otherwise it fails.

Since Algorithm SV is -essentially two applications of
the L3 algorithm, we immediately obtain the following

‘running time bound.

"
Lemma 23. ZLet {a;: 1 €i<n) and M < T a; be
=
given as input to Algorithm SV, and suppose max a; € B.
Then Algorithm SV halts after. at most 0(n%(log nB)?)
bit operations.

3. Performance Analysis

Our goal is to analyze the performance of Algorithm
SV on a class of subset sum problems

é ax;=M; all x; =0 or I; 3.1

i)

which are known to have a solution. To this end, we
suppose that (3.1) has a particular distinguished 0-1
solution (e,,..,e,) which we treat as fixed, and that

IQ:V‘e,{n—l,
i=}

i.. we exclude the trivial cases where M =0 or i a;. We
i-
sete = (ey,....e,, 0).

We analyze the performance of Algorithm SV over a
sample space of lattices. We define this sample space
A(B, e) to consist of all lattices L (a, M) defined by (2.4)
such that

@ a=(ay,..,a,) has 1 <q; < B foralli (3.2

n
(ii) M = M(a. e) - E ae; . (3.3)
iml
In particular there is exactly one lattice L(a, M) in
A(B, e) for each a satisfying (3.2); hence A(B, e) contains
exactly B”" lattices. The distinguished vector e is in all the
lattices in the sample space A(B, e) since (2.4) and (3.2)
give
n
e - 2 e'bi + bll+l . (34)

i=]

The connection between the sample space A(B, e) and
the density d(a) of. its associated subset sum problems is
as follows. All subset sum problems (3.1) associated to
lattices in A(B, e) have

d(a) > 3.5)

_n_
log,B °

and every a satisfying (3.5) contributes exactly one lattice
to A(B, e). Furthermore for any ¢ >.0 the fraction of
lattices in A(B, e) with

. n
40 < o Ba=D)



goes to | as n — oo if log;B ~ cn for some ¢ > 0.

Consequently the sample space A(B, ¢) may be regarded
n

log,8"

We can now formulate the problem we want to solve as
foliows: Determine how often Algorithm SV finds the
distinguished vector e, when applied to all the lattices in
the sample space A(B, ). This problem is intimately tied
to the question: How short is e relative to other short
vectors in the lattices in A(B,e)? We consider this
question first.

The expected length of other short vectors in lattices in
A(B, e) other than the distinguished vector e can be
determined using Theorem 3.1 below. The bound given by
Theorem 3.1 involves the number of lattice points in
spheres in n-dimensional space. We define S,(R) to be
the number of integer solutions to the inequality

as sampling subset sum problems of density

n
Tx2<R, (3.6)
im)

i.e., the number of integer lattice points inside or on the
n-dimensional sphere of radius VR centered at the origin.

Theorem 3.1. The number of lattices L(a) in the sample
space A(B, e) which contain a vector w such that

(i) w # ke for all integers k,
G) w2 < R,
is

O(R S,(R)B" '10g(BR)) . (k%))

Proof. Let T = T(R, B, e¢) denote the number of such
lattices. Let w = (w,,..., w,, 7) € Z**! be a fixed vector
satisfying

i = 3 wirt S R G.8)

i=}

and suppose that w # ke for every integer k. We count
how many lattices L(a) in A(B,e) contain w. If
w € L(a) then expressing w in terms of the basis vectors
(2.4) of L(a) gives

w = 5) w;b;+Ab, ., (3.9)

for some integer A. In particular, evaluating the last
coordinate of (3.9) gives

r =3 wia—\M @) (.10)
i=l
and using (3.3) gives
r=- é (Wi_M,-)a,' . (3.13)

i=}

We can easily bound X using (3.10); we obtain

M < Irl+ 3 Iwal < BUrl + 3 Iw,D) € RBEG.12)
jw=} fw]

using (3.8), since r and the w; are integers, so that
M 2 1 implies

I\l € RB . (3.13)

Next we note that since e # 0, it has a nonzero
coordinate, which. we suppose to be e, for convenience in
subsequent calculations. Then

M-M(.,e) )alel-al (3.14)
so that (3.12) gives
a, < ﬁ;, if A0, (.15)
Also we note that (3.8) implies .
Irl € R'2. (.16)

Now we commence counting. Let N(w, \) denote the
number of lattices L(a) in A(B, e) for which w is in L(a)
and for which X satisfies (3.9). Then (3.13) gives:

RB
TS 3 { S Nw, x)] : (.17

lIwi?<R (A=—RB

where the prime in the summation indicates that all w with

w = ke; k an integer ; (3.18)

are excluded. To estimate this sum, we divide the sum of
the right side of (3.17) into four sums, depending on the
value of the auxiliary vector

z=2z(w,\) = (w;—)ey,..., wy—he,) 3.19
and the value of A.
Casel. z=0.
In this case (3.19) gives
w=(Qe,,.., Ae,, N) (3.20)

for some N # 0. Then

w—Ae = (0,...0, N)

is in Lf(a), so that necessarily N = kM (a) for some
integer k. If k = 0, then w = Ae, which is ruled out by
hypothesis (i). Hence |k| > 1 and

nwit. 2> (M@} 2 a,,



using (3.14). The condition Iwli> < R implies that
< RV2, (a.21)

Consequently we obtain the bound
N(w, ) < R'g"1.

Now there are no more than S, (R) choices of w, and each
such w uniquely determines \ via (3.20), so that

3 Nw, N =0RYs,(R)B") . (.22
Case |

Case 2. wy—Ne; # 0andwj—Ne; =0 for2 < j < n.

In this case (3.11) gives
r=- (Wl—kel)a| . (3-23)

Together with (3.15) this gives
1<a, <R, (3.24)

so that
N(w, \) < RY2gn-! (3.25)

for such pairs (w, \).
How many such pairs (w, A) can occur? We have the
bound

|wyl < RV (3.26)

from (3.8), while (3.23) and (3.16) yield

lw,~re,| < a—’- < RV2. (.27

Combining (3.26) and (3.27) and using e; = 1 gives
Al € 2R'2. (3.28)

The values of (w,,..., w,) are all determined by
w; = Mj .

s0 that there are O(R) choices of pairs (w, A) in case 2.
Hence

3 Niw, N = 0R¥g"Y) (3.29)

Case 2

Case 3. wi—\e; # 0 for some j 2 2, and A # 0.

Consider w and X as fixed. Now by (3.15) there are at

most %’i choices for ay.

arbitrarily, except for i = j. There are B2 such choices.
For each such choice there is at most one possible choice

Now choose all the other a;

for a;, since a; is determined by equation (3.11), since

,—)\Ie’ # 0. lience in this case
Bu—l
N( A € (3.30)
Hence
RB n—l
s Awn< 3 3 A
Case 3 Wl <R A=—RB :
A0
< 2RB*'S,(R) z .
A=l )‘
Since
RB b
p> - 0(log(RB)) ,
i=1
this yields
3 N(w,\) = O0(RS,(R)B"'log(RB)) . (3.31)
Case 3

Case 4. Some wi~\e; # 0 for j 2 2 and X = 0.

Consider w as fixed. In this case we can pick all a; except
a; arbmanly, and there are B! such choices. There are
at most 2R"2+1 choices for a;, since it must satisfy (3.11)
and there are at most 2R"i+l choices of r by (3.16).
Hence in this case

N(w, 0) € QRV241)B""" .

Consequently summing over all w gives

3 NN € QR+1S,(R)B™ . (3.32)
Case 4

Theorem 3.1 follows on combining the bounds (3.22),
(3.29), (3.31) and (3.32), together with the trivial
inequality S,(R) 2 R. O

We remark that the dependence on B in Theorem 3.1
cannot be much improved, since all L(a, M) for which
a, = a, contain the short vector w = (1,~1,0,0,...,0) which
satisfies the conditions of Theorem 3.1, and there are 8"~}
such lattices in A(B, e). It is an interesting question as to
whether or not substantial improvement is possible in the
dependence on R in (3.7).

To apply Theorem 3.1, we need explicit estimates for
the number of lattice points in spheres. A general
principle here is that S, (R) should be equal to the volume
V,(R) of a sphere of radius R, with an error
proportlonal to the surface area a A4, (R) of such a sphere.
Now

V,(R) = c,R™? (333

A, (R) = nc, RV



where
L2
= T2+ .39

is the volume of an n-dimensional soherc of radius 1. For
large R one has V,(R) much larger than 4,(R), but for
R small enough, say R = an, this is not true, and spheres
of this radius centered at the origin contain many more
lattice points than their volume would suggest. It turns
out, furthermore, that for n-dimensional spheres of such
small radius an, the number of lattice points in the sphere
depends st.ongly on the location of the center of the
sphere, cf. [14]. For our application we need a good upper

bound for S,,(; n), and to obtain it we use the following

simplified version of the proof in [14].

Theorem 3.2. Foralln > l,S,,(l? n) § 2154725

Proof. Let 0(z) =142 ¥ z". Let r,(k) count the
i=1
number of solutions to

é X,'z“k .
i=}

Then
(60(z))" = E: rall)zk .

k=0

Now for x 2 0 we have

Splan) = 3 r,(k)
kCan

g " § Tu (k)e **

k=0
= g"x [g(e™) ] (3.39)

since for x 2 0 we have

e"* ek > | when k € na.
Now set

é(a, x) = ax+in 8(e™%)

and observe that (3.35) gives

Sylan) € "t m 208)@x)n (3.36)

We are interested in a'=1/2 and choose x = 0 to
optimize (3.36); the value x = xo = 0.997994 is a nearly
optimal choice. Then

a(%, x¢) € 1.07247

and

(logze)é(%. xg) € 1.54725. 0

We remark that the constant 1.54725 in Lemma 3.2 is
best possible to within one unit in the last decimal place
(see [14)).

Now we prove a result about short vectors in lattices in
the class A(B, e) where e satisfies

1

n
Ee,-%—n.

3.37)
i=] 2

The reason we consider this extra condition is that
Algorithm SV examines two lattice problems, one of which
is a lattice L(a,e) and the other Lf(a, e*) where
e* = (e},.., ¢,) is the 0-1 vector complementary 10 e, i.c.
e/ = 1—¢, for all i. Since

. n " .
min(Y ¢, 3 ¢) <
=1 =]

n *

N

the hypothesis (3.37) applies to at least one of these lattice
problems.

n
Theorem 3.3. Let e be a 0-1 vector for which Y e; < %
i=1
Then if B =25" for any constant B > 1.54725, the
number of lattices L in A(B, e) for which e is the nonzero
vector of shortest Euclidean norm in L is

B"+0(B"'® (1o B)?)

_ 1.54725
8

where ¢, (8) = 1 > 0.

This theorem asserts that, under the stated hypotheses.
"almost all" the lattices in A(B, e) have e as the shortest

‘vector. In particular, for B = 25" the density d(a) of

lattices in A(B, e) is 87!, so that this theorem applies to
sets of lattices with density less than (1.54725)~! = 645,

Proof of Theorem 3.3. Theorem 3.1 estimates the number
of such lattices by

B"+0(n S,,(% n)B" log(8,)) .

Applying Theorem 3.2 gives

S,,(% n) < 213475 ¢ gl-a®

where B > 2°".  Finally n log B, = O((iog B)? for
B > 26" and the theorem follows. O

Theorem 3.3 gave a result when the vector e is fixed.
We can immediately derive a result where e varies.



Theorem 3.4. Let B = 2" for any 8 > .2.54725. The
number of vectors & = (a,,..., a,) with 1 € a; < B for
1 £ i < n for which e is the shortest vector in L(a, e) for
all 0-1 vectors e for which

<3Te<t (3.38)
=]
is
B"+0(8"® (log B)?) (3.39)
where c,(f) = | — 234725 > 0.

8

Proof. Sum the result of Theorem 3.1 over all 2"~'~
vectors e satisfying (3.38). The resulting bound is

on 2"S,,(%)B""log(n8)) .

This is certainly an upper bound for the error term in
(3.39). Now use

on S"(Lz'_) < 22541250 Bw,w) i

and the result follows. O
Theorem 3.4 makes an assertion about lattices of
density d(a) < .393 < (2.54725)7".

Theorem 3.5. Let B 2 2U*P% for some fixed 8 > 0.
Then the number of vectors 8= (a,,.,a,) with
| €a; €B for all i for which Algorithm SV will
succeed for all 0-1 vectors e is

n—c;(B)+3 logn
B"+0((1+8)B "),

where ¢;(8) = 1-(1+8)~1 > 0.
This theorem asserts then that for any fixed 8 > 0 one
can solve the subset sum problem for "almost all”

a=(a,,.,a,) for which da) < (1+g)™! -:T, provided
2 no(ﬁ).

Proof of Theorem 3.5. At least one of the two lattice
problems Algorithr. SV considers has an associated e
satisfying

Sea<yn. (3.40)

i=l1

Now suppose for this lattice problem that the Ilattice
L(a, @) is a lattice with the property that all vectors w in
L (a, e which are not a scalar multiple of e satisfy

fiwll > n 272 2 27 Hjell

using (3.40). Then Proposition 2.1 guarantees that some

vector Ae must -appear in the reduced basis produced by
the L3 algorithm applied to L(a, e). Hence Algorithm SV
succeeds in this case. (We remark that if Ae appears in a
reduced basis, then necessarily A = = 1.)

It remains to bound the exceptional cases where this
does not occur We use the bound of Theorem 3.1 with
R = 12""2 summing over all e satisfying (3.40), to obtain
the upper bound

0n2"s, (n2"")B" ' log (n2""2B)), (3.41)

for the exceptional cases. Then using the trivial bound
S,(R) £ QR+1)" < 3nR"

we can easily obtain an upper bound for (3.41) of
O((144)2"*3 o gn-1)

Taking B = 20+ we find that

1- logn
Jn’+3log n -0(8 s@)+3 =0 )

where ¢3(8) = 1-(1+8)"'. O

Theorem 3.5 can be sharpened by using an improved
form of the L3-algorithm. A. K. Lenstra, H. W. Lenstra,
Jr. and L. Lovdsz [13] actually defined a notion of y-
reduced basis, which depends on a parameter y satisfying

— € y < 1. The notion of reduced basis corresponds to
choosing y = 3/4; the general definition is given in

Appendix A. For'a y-reduced basis the bound (2.2) of
Proposition 2.1 is replaced by:

n—1
4 . 2
v, 112 — ixi? .
K [4;:—1} L
x#0

They gave an algorithm, which we may call the L3(y)-
algorithm, which produces a y-reduced basis. An analogue

-of Proposition 2.2 holds for this algorithm, in which the

constants implied by the O-symbols depend on the choice
of y. We can modify Algorithm SV to use the L3(3)-
algorithm and obtain Algorithm SV(p). Then we may

. prove Theorem 3.5 for Algorithm SV ’y) obtaining a

_2]+B

similar bound for

where
4):_1, With this bound, letting y — 1, we

get a result which asserts that we can solve the subset sum
problem for = “almost . all” problems of density

c(y) = log,

d(a) < (1-0 {Iogz %} %

4. Computational Results

‘We performed extensive computational tests using
Algorithm SV. We tested several variants of Algorithm
SV obtained by modifying the L3 algorithm in ways
designed to improve its chance of finding the shortest
vector in a lattice. We considered two such modifications.



