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PREFACE

The finite element method has been an astonishing success. It was created
to solve the complicated equations of elasticity and structural mechanics, and
for those problems it has essentially superseded the method of finite differ-
ences. Now other applications are rapidly developing. Whenever flexibility
in the geometry is important—and the power of the computer is needed not
only to solve a system of equations, but also to formulate and assemble the
discrete approximation in the first place—the finite element method has some-
thing to contribute.

From a mathematical point of view, the method is an extension of the
Rayleigh-Ritz-Galerkin technique. It therefore applies to a wide class of
partial differential equations. The Ritz technique does not, however, operate
directly with the differential equation; instead, the continuous problem is put
into an equivalent variational form, and the approximate solution is
assumed to be a combination )] g,¢, of given trial functions ¢(x). This is
the method of weighted residuals, and the weights ¢; are computed from the
underlying variational principle. It is this discrete problem which the com-
puter actually solves.

So far the idea is an old one. What is new is the choice of trial functions:
in the finite element method they are piecewise polynomials. That choice is
responsible for the method’s success. Each function ¢, is zero over most of
the domain, and enters the computation only in the neighborhood of a parti--
cular node. In that neighborhood ¢, is pieced together from polynomials of
low degree, and the computations are as simple as possible. It is remarkable -
that simultaneously, and quite independently, piecewise polynomials have

. become preeminent in the mathematical theory of approximation of func-
tions. Apparently it was the right idea at the right time.

Because the mathematical foundations are sound, it is possible to under-
stand why the method works. This is the real reason for our book. Its purpose

ix
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is to explain the effect of each of the approximations that are essential for

the finite element technique to be computationally efficient. We list here some
of these approximations: '

(1) interpolation of the original physical data

(2) choice of a finite number of polynomial trial functions

(3) simplification of the geometry of the domain

(4) modification of the boundary conditions

(5) numerical integration of the underlying functional in the variational
principle

(6) roundoff error in the solution of the discrete system.

These questions are fundamentally mathematical, and so are the authors.
Nevertheless this book is absolutely not intended for the exclusive use of spe-
cialists in numerical analysis. On the contrary, we hope it may help establish
closer communication between the mathematical engineer and the mathe-
matical analyst. It seems to us that the finite element method provides a special
opportunity for this communication: the theory is attractive, the applications
are growing, and best of all, the method is so new that the gap between
theory and application ought not yet to be insurmountable.

Of course we recognize that there are obstacles which cannot be made to
disappear. One of them is the language itself; we have kept the mathematical
notations to a minimum, and indexed them (with definitions) at the end
of the book. We also know that, even after a norm has been interpreted as a
natural measure of strain energy, and a Hilbert space identified with the class
of admissible functions in a physically derived variational principle, there
still remains the hardest problem: to become comfortable with these ideas,
and to make them one’s own. This requires genuine patience and tolerance
on both sides, as well as effort. Perhaps this book at least exhibits the kind of
problems which a mathematician is trained to solve, and those for which he
is useless.

In the last few years a great many numerical analysts have turned to finite
~ elements, and we are very much in their debt. This is acknowledged explicitly
throughout the book, and implicitly in the bibliography, even though we
have by no means attempted a formal history. Here, before the book begins,
we want to thank two others—engineers rather than mathematicians—for
help that was the most important of all. One is Isaac Fried, whose influence
led us to abandon an earlier (and completed) “Fourier Analysis of the Finite
Element Method,” and to study instead the real thing. The other is Bruce
Irons, whose remarkable intuitions are described (and proved correct, as
often as we can) in the book itself.

Chapter 1 is very much longer than the others, and was used by the first
author as the text in an introductory course at M.LT. The only homework
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was to go out and program some finite elements. Where such programs are
already available, students could be asked to combine computational experi-
ments with a theoretical seminar based on the book.

Chapters 2 to 5 were also written by the first author. The last three chapters
were drafted by the second author, and then revised and “homogenized” by
the first. And the whole was typed by Mrs. Ingrid Naaman, who has grace-
fully allowed us to believe that she enjoyed it; thank you.

GILBERT STRANG
GEORGE J. Fix

Cambridge, Massachusetts
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l AN INTRODUCTION TO THE THEORY

1.1. THE BASIC IDEAS

The finite element method can be described in a few words. Suppose that
the problem to be solved is in variational form—it may be required to find
the function ¥ which minimizes a given expression of potential energy. This
minimizing property leads to a differential equation for u (the Euler equation),
but normally an exact solution is impossible and some approximation is
necessary. The Rayleigh-Ritz-Galerkin idea is to choose a finite number of
trial functions g¢,, . . ., gy, and among all their linear combinations 3 g,¢,
to find the one which is minimizing. This is the Ritz approximation. The
unknown weights ¢, are determined, not by a differential equation, but by
a system of N discrete algebraic equations which the computer can handle.
The theoretical justification for this method is simple, and compelling: The
minimizing process automatically seeks out the combination which is closest to
u. Therefore, the goal is to choose trial functions @, which are convenient
enough for the potential energy to be computed and minimized, and at the
same time general enough to approximate closely the unknown solution u.

The real difficulty is the first one, to achieve convenience and computabil-
ity. In theory there always exists a set of trial functions which is complete—
their linear combinations fill the space of all possible solutions as N — oo,
and therefore the Ritz approximations converge—but to be able to compute
with them is another matter. This is what finite elements have accomplished.

The underlying idea is simple. It starts by a subdivision of the structure,
or the region of physical interest, into smaller pieces. These pieces must be
easy for the computer to record and identify; they may be triangles or rec-*
tangles. Then within each piece the trial functions are given an extremely

1



2 AN INTRODUCTION TO THE THEORY CHAP. 1

*simple form—normally they are polynomials, of at most the third or fifth
degree. Boundary conditions are infinitely easier to impose locally, along the
edge of a triangle or rectangle, than globally along a more complicated
boundary. The accuracy of the approximation can be increased, if that is
necessary, but not by the classical Ritz method of including more and more
complex trial functions. Instead, the same polynomials are retained, and the
subdivision is refined. The computer follows a nearly identical set of instruc-
tions, and just takes longer to finish. In fact, a large-scale finite element sys-
tem can use the power of the computer, for the formulation of approximate
equations as well as their solution, to a degree never before achieved in
complicated physical problems.

Unhappily none of the credit for this idea goes to numerical analysts.
The method was created by structural engineers, and it was not recognized
at the start as an instance of the Rayleigh-Ritz principle. The subdivision
into simpler pieces, and the equations of equilibrium and compatibility
between the pieces, were initially constructed on the basis of physical reason-
ing. The later development of more accurate elements happened in a similar
way; it was recognized that increasing the degree of the polynomials would
greatly improve the accuracy, but the unknowns q, computed in the discrete
approximation have always retained a physical significance. In this respect
the computer output is much easier to interpret than the weights produced
by the classical method.

The whole procedure became mathematically respectable at the moment
when the unknowns were identified as the coefficients in a Ritz approximation
u=~ 3 q,p, and the discrete equations were seen to be exactly the condi-
tions for minimizing the potential energy. Surely Argyris in Germany and
England, and Martin and Clough in America, were among those responsible;
we dare not guess who was first. The effect was instantly to provide a sound
theoretical basis for the method. As the techniques of constructing more re-
fined elements have matured, the underlying theory has also begun to take
shape.

The fundamental problem is to discover how closely piecewise polyno-
mials can approximate an unknown solution u. In other words, we must
determine how well finite elements—which were developed on the basis of
computational simplicity—satisfy the second requirement of good trial func-
tions, to be effective in approximation. Intuitively, any reasonable function
u can be approached to arbitrary accuracy by piecewise linear functions.
The mathematical task is to estimate the error as closely as possible and to
determine how rapidly the error decreases as the number of pieces (or the
degree of the polynomial within each piece) is increased. Of course, the finite
element method can proceed without the support of precise mathematical
theorems; it got on pretty well for more than 10 years. But we believe it will
be useful, especially in the future development of the method, to understand
and consolidate what has already been done.
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We have attempted a fairly complete analysis of linear problems and the
displacement method. A comparable theory for fully nonlinear equations does
not yet exist, although it would certainly be possible to treat semilinear
equations—in which the difficulties are confined to lower-order terms. We
make a few preliminary comments on nonlinear equations, but this remains
an outstanding problem for the future. In our choice of the displacement
method over the alternative variational formulations described in Chapter
2, we have opted to side with the majority. This is the most commonly used
version of the finite element method. Of course, the approximation theory
would be the same for all formulations, and the duality which is so rampant
throughout the whole subject makes the conversion between dlsplacement
methods and force methods nearly automatic.

Our goal in this chapter is to illustrate the basic steps in the finite element
method:

1. The variational formulation of the problem.

2. The construction of piecewise polynomial trial functions.

3. The computation of the stiffness matrix and solution of the discrete
system.

4. The estimation of accuracy in the final Ritz approximation.

We take the opportunity, when stating the problem variationally, to
insert some of the key mathematical ideas needed for a precise theory—the
Hilbert spaces 3C* and their norms, the estimates for the solution in terms of
the data, and the energy inner product which is naturally associated with the
specific problem. With these tocls, the convergence of finite elements can be
proved even for a very complicated geometry. In fact, the simplicity of varia-
tional arguments permits an analysis which already goes beyond what has
been achieved for finite differences.

1.2. A TWO-POINT BOUNDARY-VALUE PROBLEM

Our plan is to introduce the finite element method, and the mathematics
which lies behind it, in terms of a specific and familiar example. It makes sense
to choose a one-dimensional problem, in order that the construction of ele-
ments shall be simple and natural, and also in order that the mathematical
manipulations shall be straightforward-—requiring integration by parts rather
than some general Green’s formula. Therefore, our choice falls on the equa-
nion

M (o0 %) - goom = 10x).

With suitable boundary conditions at the endpoints x = 0 and x = =, this
is a classical Sturm-Liouville problem. It represents a number of different
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physical processes—the distribution of temperature along a rod, for example,
or the displacement of a rotating string. Mathematically, the first point to
emphasize is that the equation and boundary conditions arise from a steady-
state problem, and not one which unfolds in time from initial conditions of
displacement and velocity. It would correspond in more space dimensions to
an elliptic boundary-value problem, governed for example by Laplace’s equa-
tion.

In order to illustrate the treatment of different types of boundary condi-
tions, especially in the variational statement of the problem, we fix the left-
hand end of the string and let the other be free. Thus at the end x = 0 there
is an essential (or kinematic, or restrained, or geometric) boundary condition,
in other words, one of Dirichlet type:

u(0) == 0.

At the right-hand end x = =, the string is not constrained, and it assumes
a natural (or dynamic, or stress) boundary condition, in other words, one of
Neumann type:

u'(m) = 0.

We propose to consider this model problem from four different points
of view, in the following order:

1. Pure mathematics.

2. Applied mathematics.

3. Numerical approximation by finite differenges.
4. Numerical approximation by finite elements.

It is essential to recognize the common features of these four approaches
to the same problem; the tools which are useful to the pure mathematician
in proving the existence and uniqueness of the solution, and to the applied
mathematician in understanding its qualitative behavior, ought to be applied
also to the study of the numerical algorithms.

We begin with the pure mathematician, who combines the differential
equation and boundary conditions into a single equation,

Lu=f.

L is a linear operator, acting on a certain class of functions—those which in
some sense satisfy the boundary conditions and can be differentiated twice.
Mathematically, the fundamental question is precisely this: fo match such
a space of functions u with a class of inhomogeneous terms /, in such a way that
to each f there corresponds one and only one solution u. Once this correspond-
ence between fand u has been established, the problem Lu = f isinan abstract
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sense “solved.” Of course there is still a little way to go in actually discovering
which solution u corresponds to a given f. That step is the real subject of this
book. But we believe it is worthwhile, and not just useless fussiness, to try
first to get these function spaces right. In fact, it is of special importance for
the variational principles and their approximation to know exactly which
space of functions is admissible. (The references to “spaces” of functions carry
the implication that if u, and u, are admissible, then so is ¢,u, + c,u,; this
superposition is a natural property in linear problems.)

We want to consider one specific choice, the one which is perhaps most
important to the theory, for the space of inhomogeneous data: Those f are
admitted which have finite energy. This means that

) [y dx < o

Any piecewise smooth function f is thereby included, but the Dirac d-function
is not; we shall return later to this case of a “point load.” The space of func-
tions satisfying (2) is often denoted by L,; we prefer the notation 3C°, indi-
cating by the superscript how many derivatives of f are required to have finite
energy (in this case it is only fitself).

For the simplest Sturm-Liouville equation —u’" = £, it is not hard to
guess the corresponding space of solutions. This solution space is denoted by
3C2—the subscript B refers to the boundary conditions u(0) = u'(n) = 0,
and the superscript 2 requires that the second derivative of u has finite energy. t
The role of the pure mathematician is then to show, under the assumptions
P(x) = Puin > 0and g(x) > 0, that 3C3 is still the solution space for the more
general equation —(pu’)’ + qu = f. In fact, his final theorem can be stated
in the following way:

The operator L is a one-to-one transformation from 3} onto 3C°, so that
for each f in 3C° the differential equation (1) has a unique solution u in 3}
Furthermore, the solution depends continuously on the data: If f is small, then
50 is u. .

The last sentence requires further explanation; we need norms in which
to measure the size of fand u. The two norms will be different, since the data
space and solution space are different. Fortunately, there is a natural choice
for the norms in terms of the energy, or rather its square root:

/1o = [ f oy ax]™,
ull, = [ [ (@) + @) + @x)?) dx]"”.

+These spaces are defined again in the index of notations at the end of the book.



6 AN INTRODUCTION TO THE THEORY CHAP. |

With these definitions, the continuous dependence of the solution on the data
can be expressed in a quantitative form: There exists a constant C such that

3) lally < CII £ llo-

The uniqueness of the solution follows immediately from this estimate:
If f = 0, then necessarily ¥ = 0. In fact, it is such estimates which lie at the
very center of the modern theory of partial differential equations. A general
technique for proving (3), which applies also to boundary-value problems in
several space dimensions, has been created only in the last generation. In this
book, we shall accept such estimates as proved: For elliptic equations of order
2m, this means that

“ ”quméC“f”(;

We move now to a more applied question, the actual construction of the
solution. If the coefficients p and q are constant, then this can be carried out
in terms of an infinite series. The key lies in knowing the eigenvalues and
eigenfunctions of L:

(5) u(x) = 4/%Sin(n — $)x, A, = pln—$* + q.
It is immediate to check that Lu, = —pu, + qu, = 1,u,, that the functions

u, satisfy the boundary conditions and therefore lie in JC}, and that they
are orthonormal:

J: u (X, (x)dx = 0,,.

Suppose the inhomogeneous term is expanded in a series of eigenfunctions:

(6) fx) = 21 aM/Z‘; sin(n — })x.

Then integrating formally, the orthogonality of the u, gives

1= [ frax = 3 ak

The functions f in 3C° are exactly those which admit a harmonic expansion
of the form (6), with coefficients satisfying 3 a2 <C co. Actually, this ought
to seem a little paradoxical, since apparently every f of the form (6) will
satisfy f(0) == 0, f'(z) = 0, whereas no boundary conditions were meant
to be imposed on f: The elements of 3C° are required only to have finite
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energy, | f2 < oo. The paradox is resolved by the completeness of the eigen-
functions u, in 3C°. Whether f satisfies these spurious boundary conditions
or not, its expansion is valid in the mean-square sense, ’

fﬂ (f(x) — i: a"@ sin(n — %)x)z dx — 0 as N — oo,

The boundary conditions on f are thus unstable and disappear in the limit as
N - oo. Figure 1.1 shows how a sequence of functions f,, all lying in 3C2,
could still converge to a function f outside that space.

The Sturm-Liouville differential equation Lu = f is now ready to be
solved: if f = 3 a,u,, then u has the expansion

vy, a,sin (n — $)x
M u—ZAH /*_Ep(n—‘)z-}-q

With this explicit construction, theestimate || u ||, << C|| 1 ||, and the matching
of data space 3C° with solution space 3C% can be verified directly.

The question of the boundary conditions is more subtle and deserves
further comment. We have seen already that even though f can be expanded
in terms of the u,, which do satisfy the boundary conditions, still f has
absolutely nothing to do with these conditions. Therefore the question is:
What is different about u? Why does u satisfy the boundary conditions ? The
answer is that the series expansion for u converges in a much stronger sense
than the expansion for f: not only does Y’ a,u,/, converge to u in the mean-
square sense, but so do its first and second derivatives. More precisely,

Y oa
lu— 3 %u,ll, —0  asN - oo
B n

flm#0
f fylm) =0
fN
f(O}#0
fy(0)=0
x=0 X=T

Fig. 1.1 fy in 3¢} approximating a general function /.
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The point is that when even the second derivatives converge, the boundary
conditions are stable; the limit function u is compelied to satisfy thé boundary
conditions. (Note that in Figure 1.1, the second derivatives of f, did not
converge to those of f; therefore the limit /' did not have to satisfy the boun-
dary conditions, and was outside the space 3C3. This is what will not happen
for u.)

The general rule is this: boundary conditions which involve only derivatives
below order s will make sense in the 3C* norm; those involving derivatives of
order s or higher will be unstable and will not apply to functions in the space
JC*. We shall see that this is the rule which distinguishes between essential
boundary conditions, which stay, and natural boundary conditions, which
go. The distinction becomes crucial in the variational problem, whose state-
ment is in terms of first derivatives, that is, the 3C! norm. The finite element
approximations will be required to satisfy all boundary conditions below order
|—that means the condition u(0) = 0—but they will not be required to satisfy
the condition on the first derivative. This leniency at x = z will not prevent
the finite element approximations from converging in the JC! norm to a solu-
tion w which does satisfy #'(n) = 0. This is the key to the following section,
which extends the “pure mathematics” standpoint to the equivalent varia-
tional problem.

1.3. THE VARIATIONAL FORM OF THE PROBLEM

The linear equation Lu = fis related to the quadratic functional
I(v) = (Lv,v) — 2(f, v)

in the following way: /(v) is minimized at v = u only if its derivative (or
first variation) vanishes there, and the condition for the vanishing of this
derivative is exactly the Euler equation Lu = f. The problems of inverting
L and minimizing I are equivalent; they produce the same solution u. There-
fore, such problems can be investigated either in an operational form, in terms
of the linear operator L, or in variational form, in terms of the quadratic
1. The goal in this section is to find the exact variational equivalent of our
two-point boundary-value problem.

This equivalence of differential equations with variational problems is
basic also to the choice of a computational scheme. The differential equation
may be approximated by a discrete system, using finite differences, or the
variational integral can be minimized over a discrete class of functions, as
in the finite element method. In many applications—particularly in steady-
state rather than transient problems—the variational statement is the pri-
mary physical principle, and the differential equation only a secondary
consequence. Therefore, it is not surprising to find in such applications a



