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Foreword

This book contains selected refereed papers representing recent advances in Languages and
Compilers for Parallel Computing. Early versions of these papers were presented at the Third
Workshop on Languages and Compilers for Parallel Computing held during August 1-3 1990
in Irvine California, under the sponsorship of the Computer Systems Design Research Unit
at the University of California at Irvine. The previous workshops in this series were held in
Ithaca NY, August 1988, and in Urbana-Champaign, 1989.

The topics of the papers in the book are representative of the various aspects of research
in this area and illustrate the great amount of interest parallel computing in general, and
parallelizing compilers and languages in particular, are currently generating.

The book is divided into several sections, roughly corresponding to the major efforts in the
figld. The papers by Eigenmann et al., Foster & Overbeek, and Jagannathan discuss
languages and language extensions. Those by Gelernter et al. and Gannon et al. present two
innovative environments for parallel programming. Miller & Netzer describe techniques for
debugging parallel programs. Guzzi et al., Eisenbeis et al., Solworth, and Gao et al. deal with
the very important issue of data organization and management during parallel processing.
New compiler techniques for parallelizing loops are described by Banerjee, Ayguadé et al.,
and Wolf & Lam. Important new results in code scheduling are given by Gross & Ward and
Aiken & Nicolau. Innovative approaches to dependency analysis and representation are pro-
vided by Kallis & Klappholz, Haghighat & Polychronopoulos, and Pingali et al. An interest-
ing insight into the measurement of parallelism implicit in ordinary programs is revealed by
Larus. Finally, Mehrotra & Van Rosendale, Quinn et al., Li & Chen, and Dietz et al. deal
with programming and compiling for distributed and shared memory multiprocessors.

We, the Editors, are very pleased with the breadth and depth of the work presented in
these papers. Taken together, these papers are an accurate reflection of the state of research
in Languages and Compilers for Parallel Computing in 1990. We hope this book will be as
interesting to the reader as it was for us to compile.

Alexandru Nicolau.
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1  Cedar Fortran and its Restructuring

Compiler ,
R. Eigenmann, J. Hoeflinger, G Jaxon, D. Padua

Abstract

The Cedar architecture integrates shared memory into a distributed system
of Alliant mini-supercomputers. Nested parallel loops and a hierarchical
memory model allow Cedar Fortran to offer a wide range of implementa-
tion possibilities for an algorithm, which makes automatic parallelization
easy to do, but hard to do well. Techniques from both shared memory and
distributed memory programming paradigms are applied to this problem.
Early results show that restructuring can speed up kernels and algorithms.
We identify improved techniques that may extend these results to full appli-
cations.

1 Cedar Fortran within the Cedar System

The hardware and software structure of Cedar was motivated by a desire to achieve a low
cost /performance ratio for a wide variety of applications, and to make that performance
easily available to the user [28]. The hardware offers a hierarchical memory structure
as well as the means to control fine-, medium-, and coarse-grain parallelism. The Cedar

Fortran compiler, with support from its runtime library and the Xylem operating system,

makes those architectural features available through the direct expression of parallelism
within a Fortran context. The compiler includes a restructurer which can automatically
translate serial programs into a parallel form. .

Cedar combines two complementary approaches to parallel processing. On one hand,
it can be viewed as a distributed system with high-bandwidth communication channels.
On the other hand, it may be seen as a shared memory machine. A given program may
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Figure 1: The Cedar Architecture

make use of both programming paradigms as the situation dictates.

The layers of concurrency in Cedar and the various ways parallel activity can be
expressed in the Cedar Fortran language present many opportunities to speed up parallel
programs. But, this becomes a complexity issue for the Fortran restructurer, which must
choose one good translation for a given serial program from among many alternatives.

In this paper, we describe the Cedar architecture, the software environment, in
which Cedar Fortran runs, and the Cedar Fortran language. We then discuss the issues
that this hardware and software environment presents to the Fortran restructurer. Finally,
we mentipn some results and future directions for our research.

1.1 The Cedar Hardware Architecture

The Cedar machine (Figure 1) consists of several processor clusters (currently four) con-
nected through a network to a global memory. '

Each cluster is a modified Alliant FX/8 multiprocessor, containing up to eight
vector-pipelined- computational elements (CEs) that share a cluster memory [3]. Access
to each cluster’s local memory is accelerated by a large data cache shared by all the CEs of
that cluster. On each cycle, it can respond to four memory references from different CEs in
the cluster. In addition, each CE has a private instruction cache and a virtual-to-physical
address translation buffer. »

 The physical addresses generated by Cedar’s CEs have been extended. Addresses
beyond the original range are routed to the CE’s global interface instead of to the cluster’s
memory cache. The global interface links each CE to global memory through two commu-
nication networks. One sends data, the other receives it. Each direction in the network
crosses two stages, each stage is made of 8 x 8 crossbar switches. The switches interconnect
in the “perfect shuffle” pattern that forms an Q-network. The resulting communication
bandwidth is close to that of two complete crossbars at a much lower cost [13].

2



The latency to access a single word in the glob# memory can still be large, so
the global interface includes a pipelined vector-prefetch capability. Using this, a CE may
request a block of data from global memory and continue its computations while the
prefetch buffer fills up. Once vector data resides in the prefetch buffer it can be accessed
at the CE's peak rate. The Cedar Fortran compiler places a prefetch request in the code
stream before each use of a global vector; sometimes overlapping other computation. The
following table compares the incremental cost of each Cedar memory access mode.

RELATIVE SPEEDS OF CEDAR MEMORY

LOCALE ACCESS MODE
FAST Register R W
Global R vector read already prefetched
Cluster R W eache hit ‘
Global R vector read while prefetching
Cluster R W vector read/write
Global W write
Cluster "B W cache miss
Cluster ~~ W test & set
Global R vector read no prefetching
Global R scalar read
Global W test & set

Efgg Global R W synchronization op

Synchronization processors on the global memory boards provide a large set of
atomic operations on data stored there. The Cedar synchronization hardware {45, 38} op-
erates on up to two consecutive words of global memory. Many common critical sections
are available as indivisible instructions, including the fetch-nezt-iteration step for a multi-
cluster parallel loop. This hardware supports fine-grain synchronization among all CEs in |
every Cedar cluster. '

The CEs within each cluster also connect to a concurrency control unit (CCU) by
a special purpose bus. The CCU can form a group of CEs that will cooperate to execute
parallel codes. This has been implemented in software on other machines such as the IBM
RP3 [41}, Sequent [36], and the Cray X-MP [9], where it is known as microtasking. The
Alliant FX series hardware support for microtasking includes

self-scheduling of the iterations of a 1-cluster parallel loop: as each CE finishes
an iteration, the CCU gives it the next available iteration number,

AWAIT and ADVANCE instructions to serialize the order of some memory references
made from different iterations of a paraliel loop, and

barrier synchronization after the last iteration, to ensure that all iterations are
done before the program continues. '



1.2 The X};lem Operating System

The software that coordinates the clusters is the Xylem Operating System [20], an extension
of Unix. Under Xylem, a program executes as a Xylem process. A process is made up of one
or more independently scheduled tasks. Each task is assigned to a particular Cedar cluster
for its lifetime. In a task’s address space, each page of memory has its own attributes of
locale (cluster or global memory) and visibility (private or shared by all tasks of this
' process). All four combinations of locale and visibility are possible [33].

Pages that are shared cluster are handled in a special way. If the page is read-only,
it is simply copied into the cluste: memory of each task that refers to it. If the page is
writable, the first task using it gets a cluster memory copy; Xylem traps subsequent uses in
other tasks so that the program’s runtime system can mediate the communications needed
to actually share the data.

The shared memory-of a process is owned by a master address translation table
which Xylem keeps in global memory. The individual tasks take registered copies of entries
from this table to initialize or restore invalid entries in their private memory maps. Xylem’s
virtual memory system periodically invalidates a few random entries in each task’s memory
‘nap. Thus, unused pages gradually lose their registered users. A sharéd page with no
registered referents may be moved to secondary storage: either to the cluster memory of
the last referent, or to a disk connected to that cluster.

This design for shared virtual memory adds a hidden cost to programs that make
sustained use of shared memory: keeping the private memory maps valid. When amortized
over all memory references, this cost is quite low. But, revalidating any single entry takes
several hundred microseconds, comparable to entire loops in many applications. This
is a source of load imbalance between processors. Self-scheduling of parallel work can
compensate for some of this imbalance. But, scheduling across clusters usually increases
the map revalidation costs since it increases the number of memory maps involved.

1.3 The Cedar Fortran Runtime Library

Various intrinsic functions, for which it is not practical to generate inline code, are supplied
by a runtime library. The library includes a set of Cray-style tasking and synchronization
routines [16] that exercise Xylem system services. In particular these support the CTSK
and MTSK family of intrinsics to be described in section 1.4.3.

Chief among the services supplied by the runtime library is a software version of
microtasking that can quickly spread work across clusters. In order to use several clusters
in parallel, the library runs the program in a Xylem process that contains several extra
helper tasks (“implicit tasks” in IBM terminology[26]). The helpers run for the duration of
the process, waiting for microtask work to be posted. The most important unit of microtask
work is a multicluster parallel loop, which we call a spread loop. When some task reaches
a spread loop, it posts one microtask describing the loop into global memory. We say this
task is the parent of the microtask. This signals the helper tasks to wake up and join the
parent in competing for loop iterations to execute. We implemented three variations of
this simple idea in separate libraries, which we call Queued, Simple, and Static.
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Queued

Simple Static
mertoces | oot xooais | SO | sponss 10,
QUIT QQUIT
SDOALL helped by 0 — F#thelpers 0 — #helpers = #thelpers
Ma.x#;microtasks queue size 1 at a time -1 at a time
Max# parents process size #nonhelpers 1
Sync Used | Test&Set Lock | Test&Set Lock . Barrier
Wait Used | spin/dawdle/block spin spin
Avg. Latency! | 9u/ 100;1/ 100m sec 9 usec 9 usec
4-way Fork & Join? 320 usec 180 usec 40 psec
Scheduling self-scheduled self-scheduled | static schedule
‘Wait Used spin/ dawdle - spin none
Get Next Iteration? 25 psec <10 psec 0
1no other jobs active ¢

3minimum times

‘

Figuxle 2: Compa.rison of Three Microtasking Libraries

Queued: Like a traditional scheduler, tlns library queues up microtasking work as: it ia
generated by several parent tasks, or by the nesting of spread loops. In theory, the heI’pers
should stay busy constantly emptying this queue; they do this by uif dispatching. This
scheme does not guarantee that a particular helper will participate in the execution of any
particular loop. The flexible control mechanism needed for this design invited the inclusion
of additional features: Loops spread by this library version can be terminated prematurely

"by a QUIT statement; and parallel subroutme calls can be queued alongside pa.rallel loops
by MTSKSTART. .

The “queued” library assumes that there is a vast variety of parallel work in progress '

so it allows other tasks to take over the cluster when one task mhust wait. For a short time
the library code repeatedly tests the wakeup condition; but it soon surrenders the task’s
timeslice (via the dawdle system call). Finally, if the wak&np condition is still not satisfied,
furtRer ex&cution of the task is blocked until a wakeip signal is posted (Xylem system
calls wait_ and clear.xlock). Synchronization delays can be quite high because the task
schedula on each cluster and the microtask schedulers in each process work independently.
But sifice the clusters can stay busy during these delays, overall throughput is usually
acceptable.

Under a simple load (e.g., one spread loop runnmg in single-user mode) the “queued”



library can avoid much of the overhead and unpredictability introduced by the system calls.
But it cannot avoid all costs of the extra features, nor the cost of queueing and dequeueing.
The available parallelism is also reduced by the latency time it takes to reactivate the

helpers and return them from the dawdle or wait xlock system calls that they made
while waiting for work.

Simple:  So, in the “simple” library version, we restricted or removed features to reduce
costs: tasks which must wait never surrender their processor; QUITs and MTSKs are not
supported; and only one loop may be spread at any one time (others are forced into serial
execution). We retained the idea that loop iterations are self-scheduled and that helpers
are self-dispatched (i.e., helpers are only volunteers). In exchange we experienced lower,
and more reproducible, startup and shutdown costs, and improved turnaround time for
single applications under light load conditions.

Self-scheduling and self-dispatching distribute a loop’s iteration space across the
clusters in a fortuitous pattern, that tends to balance the workload. These techniques must
be controlled by short critical sections of code during which one processor has exclusive
use of the microtask description. In both the “simple” and “queued” libraries, the critical
sections can be provided by the Cedar synchronization hardware. But as of this report, we
have not yet timed library versions using that hardware. Instead we have used traditional
locks, supported by an atomic “Test & Set” instruction to protect critical regions. This

software method is three times slower than the Cedar hardware, so further improvement
is expected.

Static: In some cases, load balancing is not as important as low overhead and absolute
tepeatability. So we implemented a statically dispatched and scheduled SDOALL, without
:ritical regions. The “static” library guarantees that every helper task participates in
svery parallel section. Each helper is assigned a unique index for the life of the process,
ind also knows the total count of helpers. With these parameters, a compiler can distribute
wy iteration space or index set in a repeatable pattern. In section 2.7 we describe how
‘epeatability will allow the restructurer to use this form of SDOALL for data distribution.

The high performance of the “static” library is vulnerable to scheduling disruptions
hat arise on one cluster, but require that all helpers be delayed. The average performance
f static microtasks deteriorates quickly as other loads are added to the system. However,
his library has let us explore Cedar’s peak performance.

..4 The (3'edar Fortran Language

‘he Ceda.r Fortran language [24] is an extension of Alliant’s FX/Fortran [4], which is
ORTRAN77 augmented with vector constructs like those in the Fortran 90 standard [44].
*he additions made to Alliant Fortran to form Cedar Fortran are mainly those that express

arious types of parallel loops, and make use of Cedar’s memory system and mntlme library
wilities.

~

f



1.4.1 Cedar Fortran data declarations

Cedar Fortran includes three new statement types that declare the memory attributes
(locale and visibility) of the storage needed for program variables.

GLOBAL wvariable [ , variable |
CLUSTER wvariable [ , variable ]

PROCESS COMMON / name / wvariable [ , wvariable |

Figure 3: Cedar Fortran data declaration statements

In Cedar Fortran, an ordinary Fortran COMMON declaration statically allocates private
storage in the cluster memory of each task, not visible to any other task. A COMMON block
may be declared as PROCESS COMMON, which marks its content as shared by all tasks of this
Xylem process. By default a PROCESS COMMON block is placed in global memory.

Variables outside common blocks may be declared GLOBAL or CLUSTER. By default, a
subprogram’s variables are dynamically allocated on a stack. This yields separate storage
for each recursive or parallel call. Static allocation (SAVE) is also available, but it must be
properly synchronized in the case of parallel calls to the subprogram.

A CLUSTER declaration specifies that the variable will be (stacked) in private cluster
memory, inaccessible to other tasks. Declaring a variable GLOBAL means it will be allocated
on a stack in shared global memory so that it can be used by every task in the program.
By itself, the GLOBAL statement does not enlarge the scope of a variable; other subprogram
calls only learn the variable’s address by ordinary parameter passing mechanisms.

COMMON and PROCESS COMMON block names may also appear in CLUSTER or GLOBAL
statements to change their default locale (but not their visibility). For example, a PROCESS
COMMON block named in a CLUSTER statement is placed in shared cluster memory as de-
scribed in section 1.2. Figure 3 summarizes the syntax of these statements.

1.4.2 Concurrent loops

The syntax of a concurrent loop in Cedar Fortran is an extension of the syntax for a FOR-
TRANT77 DO loop, with “D0” changed to a new keyword that selects a concurrent execution
rule. The keywords are: CDOALL, CDOACROSS, SDOALL, SDOACROSS, XDOALL, and XDOACROSS.
Figure 4 gives a synopsis of this syntax. Several optional sections have been added to the
loop body that are not available in ordinary. DO loops:
Local Declarations define variables that are private to each iteration of the loop

and inaccessible outside the loop. Several iterations may execute concurrently

and refer to their local variables without interfering with each other, since they

are really referring to different storage cells.

The Preamble is executed once by each participating entity before starting its
first iteration of the loop.

SDO and XDO loops offer one further optional part:



c
DOALL . o
{i {DOACROSS} [label] indez = start , end [, incr]

{local declarations]

preamble
LOOP

body

[ ENDLOOP ]

postamble (only for SDO or XDO loops)

labeled statement
Cc
DOALL
END{ i } { DOACROSS }
Figure 4: Concurrent loop syntax

A Postamble is executed once by each participa.nt when it finds no more itera-
tions left to execute,

CEs participate independently in CDO and XDO loops, whereas in an SDO loop, the partici-
pants are whole tasks (parents or helpers). Every participant takes at least one iteration.
Every iteration is executed by exactly one participant. In each of these types of parallel
loop, once all the iterations and postambles have finished, one CE continues executing the
code that follows the loop, and the others go idle or go to work for other tasks.

DOALL loops may perform their iterations in any order whatsoever and should not
contain any synchronization between iterations. In contrast to this, the iterations of a
DOACROSS loop are guaranteed to start in the same order as they would if the loop were
serial. This makes it possible to pass synchronization signals from early iterations to later
ones, an interaction called cascade synchronization, which can be implemented without
deadlock.

CDOALL and CDOACROSS loops are executed totally within a single cluster. They use the
cluster concurrency bus to activate and coordinate all CEs assigned to the task.

In CDOACROSS loops, the cluster’s concurrency control unit (CCU) may be used for
cascade synchronization. Cedar Fortran provides intrinsic subroutines AHAIT and
ADVANCE that use the CCU to synchronize between iterations.

SDOALL and SDOACROSS loops are examples of spread loops. They use global memory and
facilities provided by the runtime library to bring the program’s helper tasks into
parallel execution of the loop.

Idle helper tasks always leave one CE awake to watch for microtasking work. When
the program’s execution reaches a spread loop, a description of the loop is posted



in global memory. In each helper task, one CE reads the description and begins
executing the preamble and body. To activate the other CEs in each participating .
task, an SDO loop body should contain some kind of CDO loop.

Any data that flows into or out of a spread loop iteration must reside in shared
memory so it is visible from all clusters; read-only data can be copied into each
cluster’s private memory in the SDO preamble.

The runtime library provides a synchronization point at the end of a spread loop to
ensure that all helper tasks finish with their work before the parent task continues.

XDOALL and XDOACROSS are spread loops like SDOALL, except that they do not need an
inner CDO to start using all the CEs in a cluster. As each helper task joins the
execution of a XDO loop, all of its processors automatically begin executing iterations
of the loop. This simplifies the use of the machine in that its division into clusters
can be ignored.

Since it is a cross-cluster loop, the data used in a XDO need the same processwide
visibility as data in a SDO.

1.4.3 Explicit tasks and microtasks

Cedar Fortran provides two ways of specifying work that may execute separately from
the task which starts it. In the CTSK mechanism, a brand new cluster task is added to
the process and is given a subroutine to execute. The new task becomes an independent
sibling of the task which created it. Each such cluster task can be preempted or resumed
as needed to synchronize with any other cluster task. The startup and skutdown costs and
the resources consumed by this approach confine its use to coarse grain parallelism. The
following routines are used to start, wait for, and inquire about cluster tasks:

task_id = CTSKSTART(processors, [cluster_id,] subroutine [,argument) ... )
call CTSKWAIT(task.id )
logical = CTSKDONE(task.id )

The other mechanism (MTSKs) uses an existing helper task to execute the subroutine
as a microtask. This avoids most startup costs, and supports medium grain parallelism.
Since there is only a fixed number of helper tasks (possibly none), and no preemptive
" scheduling for microtasks, ordinarily correct synchronization could deadlock. But it is safe
to wait for a given microtask to finish. The followmg routines are used to start, wait for,
and inquire about microtasks:

work_id = MTSKSTART (subroutine , priority {, argument) ... )
call MTSKWAIT(work.id )

logical = MTSKDONE(work_id )

call MTSKWAITALL



