SOFTWARE
UNDER SIEGE:

WVIRUSES AND WORMS

CC—pvro <

L 4!

SOFTWARE
UNDER SIEGE:

VIRUSES AND WORMS

E.L. Leiss

Department of Computer Science
and Rese tation Laboratory
Uni o He , Texas, USA

Elsevier Advanced Technology
Mayfield House, 256 Banbury Road, Oxford OX2 7DH, UK
Commissioned by
Technical Communications (Publishing) Ltd

Copyright © 1990

Elsevier Science Publlsheﬁ Ltll

Mayfield House, 256 Banbury Road, Oxford OX2 7DH,
England

All rights reserved. No part of this publication may be
reproduced, stored in a retrievdl system, or transmitted in
any form or by any means, electronic, mechanical,
photocopying, recording of otherwise, without prior
permission of the publishers. .

No responsibility is assumed by the Publisher for any injury
and/or damage to persons or property as amatter of products
linbility, negligence or otherwise, or from any use or operation
of any methods, products, instructions or ideas contained
herein.

British Library Cataloguing in Publication Data
Leiss, Ernest L., 1952-
Software under siege.
1. Computer systems. Viruses. Management aspects
I. Title
658.4'78

ISBN 0-946395-58-8

b]

121 saet

Bl

PREFACE

Computer viruses have recently httracted widespread
attention, all of it negative. Although they had been known
at least since 1983, they were customarily dismissed as
insignificant and posing no discernable threat. Subsequent
successful attacks by viruses and similar attackers have
disproved this position, with the result that parts of the
computing community have now embraced the other
extreme, a great deal of fear and loathing and a distinct
feeling of defenselessness.

This book is based on the premise that a known enemy
is easier to defeat than an unknown one. To this end we
describe various methods of attacking computer systems
and draw conclusions from then about ways of combatting
viruses. We feel that there are many who are not interested
in all technical intricacies of viruses, but nevertheless want
to obtain a reasonably accurate and complete description of
the threat posed by them. Thus, we have avoided using too
much technical jargon. For those readers who do want to
learn more about the technical details, we have included
references which should satisfy their interest in more
technical points.

This book grew out of an article on computer viruses
that 1 was asked to prepare for the 1990 yearbook of the
Encyclopedia of Physical Science and Technology.
Subsequently, I felt the need for a more in-depth treatment
of this topic, which eventually occasioned the present book.
In collecting literature for these works, I was ably assisted
by a graduate student, Ms. I-Ling Yen; of course any

omissions and errors are exclusively my own fault. By and .

large, this book reflects the status of virus research and
related developments through summer 1989. It is therefore
very up-to-date at the time it goes to press and should
provide an accurate reflection of developments in this field.

E.L. Leiss

iii

PART 1
Chapter

CONTENTS

INTRODUCTION

1. Background: Changes and Concerns

1.1

-t
Db WN

Changes in Computing Milieu -

1.1.1 Centralized versus Decentralized

Computing
1.1.2 Sharing of Software

Protection versus Convenience of Use

Potential for Damage

A Comment on Legal Issues
Security and Integrity
Bibliographical Notes

PARTH THE ILLNESS

Chapter

2. Brief History of Computer Virus Attacks

2.1
2.2

23
2.4

Precursors of Viruses
Reported Virus Attacks
2.2.1 PC Networks

2.2.2 Mainframe Attacks
Outlook ,
Bibliographical Notes -

3. Definitions

3.1
3.2
3.3
3.4
3.5
3.6

3.7

Logical Bombs s
Trojan Horses

Computer Viruses

Computer Worms

The Process of Viral Infection
Types of Damage

3.6.1 Primary Damage
3.6.2 Secondary Damage
3.6.3 Harmless or Vicious?
Bibliographical Notes

4. Examples

4.1
4.2

Ken Thompson's Trojan C Compiler
A Virus Template

iv

15

17
17
19
19
24
26
27

29
30
31
32
33

35

37
37

39
39
39

4.3 Viral Actions - 41

4.4 The Internet Attack - 44
4.4.1 Victims and Their Characteristics 44
4.4.2 What the Worm Did Not Do 50
4.4.3 Flaws 50
4.4.4 Defenses of the Worm 51

4.4.5 Attempts at Defending Against the -
Worm 52
4.5 Bibliographical Notes : 53
5. Related Attacks 55
5.1 Types of Attacks 55
5.2 The LBL Investigation 56
5.3 Bibliographical Notes) 59
PART III' DIAGNOSIS 61

Chapter

6. Detection of Viruses: Theoretical Aspects 63
6.1 Detection is Undecidable 63
6.2 Implications 64
6.3 Bibliographical Notes) . 65
7. Detection of Viruses and Worms: Practical Aspects 67
7.1 Detection of Code 67
7.2 Symptoms of Spread 67

7.2.1 User Observable Symptoms of Spread 68
7.2.2 System Observable Symptoms of

Spread 70

7.3 Symptoms of Damage 72

7.4 Detection Products 73

7.5 Bibliographical Notes 74

PART IV PREVENTION AND CURES 75
Chapter

8. Prevention: Theoretical Aspects 77

8.1 Prevention of Viruses _ 77

8.2 Hardware Modifications 78

8.3 Bibliographical Notes - 79

9. Prevention of Virus Attacks: Practical Aspects
9.1 Software-Based Protection Schemes
9.2 Hardware-Based Protection Schemes
9.3 Bibliographical Notes

10. Cures ;
10.1 Undoing Damages
10.2 Purging an Attacker

11. Precautionary Rules of Thumb

12. Concluélons
BASIC HYGIENE
APPENDIX

Al. Authorization Systems
A Introduction
B. The Safety Problem
C. An Implementation
D. Bounded Propagation of Privileges

A2. Cryptosystems
A. Symmetric Encryption
B. Asymmetric Encryption
C. Selected Applications
1. Data Integrity

81
81
85
87

89
89
89

91

93
95
97

97
97
99
100
104

105
106
108
113
113

2. Authentication and Digital Signatures 114

A3. Write-Once Disks
A. Immutable Codes
B. Alternative Schemes

A4. Bibliographical Notes

BIBLIOGRAPHY

vi

116
118
119

123

125

PART 1

INTRODUCTION

The introduction sketches
the backdrop against which
the threats against data-
integrity are played out. It
discusses changes in the way
computing is done and their
relationship to the emerging
threats by computer viruses
and other attackers.

Chapter One

Background: Changes and
Concerns

This book is about computer viruses, worms, logical
bombs, and other threats to software and data. It will
describe the iliness, starting with actual attacks, define
the causes, and discuss diagnosis as well as possible
cures and prevention. However, in order to understand the
phenomenon better, one has to start with the overall
context within which these problems were able to arise.

Our starting point is an incident, of which certain facts
are clear and well known. On the evening of November 2.
1988, a plece of software attacked and successfully
invaded an estimated 6000 computer systems world-wide.
Within a matter of hours, these systems were inoperable.
Reportedly, this was the first time that mainframes were
attacked; prior to this incident, only personal computers
(PCs) had been affected in several relatively isolated
instances. ‘The November 2, 1988, incident exploded the
myth that only rather unsophisticated systems such as
PCs were Vulnerable, thereby creating a great deal of
anxiety in commercial computing centers around the
world. :

Instead of asking how computer virus attacks can
occur, it proves much more instructive to ask why there
were no extensive attacks earlier. The answer {0 this
question lies in the change that occurred in computing in
general in the last five years or so.

1.1 Changes in Computing Milieu

Several major changes occurred in the way users view
computing in the past few years. Two of these are of
central interest in our explorationi of the reasons why

SOFTWARE UNDER SIEGE

viruses and other attackers threaten the security and
integrity of our computer installations. The first relates to
the way in' which computing i1s, and has been,
administered; it reflects the trend away from monolithic,
hierarchical computing.centers or centralized computing
and towards networks of local workstations or distributed
computing. The secomd change has to do with the
distribution of software, in particular the sharing of
software at a variety of levels.

1.1.1 Centralized versus Decentralized
Computing

Until the beginning of the 1980s, most serious
computing was done on mainframes. Together with this
came a certain mindset: there was a centralized
computing center; all processing power was located there;
virtually all data and all programs were stored there; users
submitted jobs, typically for batch processing, from
(dumb) terminals; and most importantly, all systems
programmers were physically located at this center. As a
result, any user who needed capabilities that were not
ordinarily granted to end users had to submit a request to

-the computing center which in turn acted upon it. Thus,
systems privileges were tightly restricted to a rather small
group of systems programmers who could be rather
stringently controlled, both physically and organizationally
(see Figure 1).

Interactive processing became commercially accepted
in the 1970s; in principle it gave the end user more
capabilities, but the mindset did not change substantially.
However, interactive computing did force the operating
systems to become more sophisticated since now several
users were active at the same time; consequently
safeguards had to be built in to protect users that were
running jobs at the same time from interfering with each
other.

At the end of the 1970s, PCs made their appearance.
Initially these were very primitive systems. Designed for a
single user, they were slow, with insufficient data storage

4

BACKGROUND

and very rudimentary operating systems. By and large,
these were home computen, as opposed to business
computers, and they remained just that, even when
individual systems became more powerful. In
advertisements and computer magazines, PCs were quite
early touted as superior to términals connected to central
mainframes; however the business community remained
largely unconvinced. For good reason: most business
activities tend to be interrelated; different units of the
same enterprise must opgrate on a common database.
Consequently, computers that were unable to share data
and programs efficiently and consistently did not meet the
requirements of business data processing in the 1980s.
(Copying data onto floppy disks and sharing disks should
be viewed akin to corresponding by pigeon carriers.)
Moreover, secondary data storage facilities of PCs were
stmply inadequate for business purposes.

centralized system

CPU.
=

programs and data T

systems programmers

Figure 1. Centralized processing

SOFTWARE UNDER SIEGE

This situation changed substantiaily with the advent of
networking, especially local area networks (LANS), in the
second half of the 1980s. Instead of having isolated
islands (read PCs) floating independently in a sea of
information, accessing data independently and producing
possibly inconsistent results, all computers of an
enterprise could now be connected to each other,
including PCs and mainframes. Even more importantly,
through the use of networks data storage could be
organized so that different processors could access the
same databases and operate on them in a consistent
manner. ,

With networking came a decentralization of power, as
the computing center personnel were no longer the
undisputed high priests of computing in a company. Most
other units in a commercial enterprise would have fought
such a development. For example, accounting functions
are typically reasonably centralized, reporting to a
controller, who would strenuously oppose any move to
distribute these functions to the smallest operaticnal units
(departments, project teams) of a company. However, since
personal work stations (as PCs came to be known, once
marketing divisions of PC manufacturers realized that
businesses did not want to buy PCs - read home
computers - for their employees) and networking were
considered the cutting edge of computing technology,
computing centers either acquiesced to, or even became
active champions of, the decentralization of computing.

This development implied a rather subtle but from our
point of view crucial change: every employee who had a
work station on his or her desk now acquired, to some
extent, functions that previously were carried out by
.systems programmers. While in many cases this change
was not obvious to the user, since it rarely went beyond
the loading of the operating system which for most
employees was not much more than the switching on of
the terminal, at the operational level this introduced a
qualitative and most important difference: it was now the
. end user that was in control of the computer, and not the
compuling center personnel (see Figure 2).

BACKGROUND

The significance of this shift did not become
immediately apparent to the users, nor for that matter to
most computing center directors. However, at the level of
the operating system, it had far reaching consequences.
As we pointed out, the systems software (file systems,
operating systems, etc.) of PCs was basically designed with
a single user in mind. As soon as PCs were connected to
each other {and to mainframes), this single-user world
view was shattered; yet the operating systems of many
personal work stations did not change drastically: on the
one hand, networking was added to enhance the
functionality of the older systems, on the other hand, even
newer systems sometimes ran older systems software,
usually for reasons of compatibility. As a result,
safeguards against (accidental or malicious) undesired
changes of data and software were, and still are,
substantially inadequate. Since most networks are not
safe (and are really not designed to be safe), it is the
processors on which the burden of safeguarding data and
software rests. For historical reasons as well as for
reasons of personnel management, mainframes are
somewhat more resilient to such changes than personal
work stations (but by no means tmpervious; see Section
4.4).

users users users.
Py Al CPU
network -
programs and data programs and data pregrams and data

Figure 2. Processing using networked workstations.

SOFTWARE UNDER SIEGE

1.1.2 Sharing of Software

With the advent of significantly expanded programmer
communitites, the question arose whether it made sense
to write programs for essentially the same problems again
and again. This question was (obviously) answered
negatively, and this gave rise to the problem of how to
share software. Sharing here has a variety of meanings. It
could be attempting to copy (usually illegally) a major
piece of code supplied by a vendor with the objective of
avoiding purchase; it could result from identifying an
interesting and desirable technique for solving a particular
common problem in a colleague's software; or it could be
the consequence of a carefully designed "toolbox" of
modules which a programmer established in order to
stmplify the task of solving complex problems. In all these
cases, it is clear that both the person having the software
and the person desiring it must agree to exchange the
code. This is true regardless of whether the sharing
involved is legal, i.e., if the owner has the right to make
copies and distribute them, or not. Thus, in the situations
described a certain personal relationship had to be
established, a certain amount of trust was required.

A subtle change in this occurred with the advent of
bulletin boards and program exchanges: the sharing
became far less personal. In many cases, the person
copying did not know the original owner of the software
and guarantees were usually explicitly denied. However,
these disclaimers were universally disregarded by the
programmers who acquired at little or no cost interesting
and attractive software that allowed them to do things that
were either beyond their capabilities or would have
required a substantial investment in time which they were
unwilling to make.

In this way, trust was established that was misplaced,
since it could be, and was, abused by more or less vicious
pranksters. Programs were placed on electronic bulletin
boards under the pretext of making them available to the
general public whose primary function was the infection of
the computer systemn on which they were installed. A
particularly vicious (or ingenious) example is the program

8

BACKGROUND

Flu-Shot 4 which masqueraded as an anti-virus product
but in fact was itself a damage-causing virus. Bulletin
boards in this way provided an attacker with a trusted
means of entry to a system, which was clearly in its
ultimate result the antithesis to the purpose for which
they were created; because they facilitated the distribution
of attacks they undermined the very purpose for which
they were created, namely the distribution and sharing of
information and software. S

Decentralized processing ahyd software sharing provide
the background against which .the drama is played out.
Many problems stemming from virus attacks - can
ultimately be traced back to this change in the computing
milieu. .

A related issue is that of convenience of use, which in
most cases is compounded by the decentralization of
control.

1.2 Protection versus Convenience of Use

Many security risks can be eliminated by using certain
precautions. One problem with these precautions is that
they almost invariably reduce the ease of use of the
resulting system. For example, some of the threats to data
integrity could be eliminated by encrypting data together
with some redundancy (for more detatls, see the
Appendix). The major drawback of this approach is that
the data file must be decrypted before each use.

A more mundane example is-the use of nontrivial
passwords. As we will see, among others, the November 2
incident referred to above was substantially facilitated by
the fact that users tend to choose rather simple
passwords, which can often be guessed by an attacker.
The obvious advantage of simple passwords is that they
can be remembered easily. More complicated passwords
tend to be written down and stered in an easily accessible
location - thereby again compromising the security of the
system they are supposed to protect. Note however that in
the case of easily guessable passwords anybody with
access to the network can become a threat, while in the

9

SOFTWARE UNDER SIEGE

case of passwords posted in a drawer or on the side of the
work station, physical actess to the employee's office is
required before a threat may materialize. Since physical
access to an office is traditionally more restricted than
access to a general -purpose data network, complicated
passwords, even if théy are posted on the terminal, may be .
more secure than simple passwords which ¢an be eastily
remembered but also guessed.

The problem of convenience of use is aggravated by the
decentralization of control; previously a computing center
might have unilaterally assigned passwords and changed
them periodically to other prespecified ones; now the
owner of a work statton is in control of this. While it would
of course be possible to assign preselected passwords to
all participants in a network (and to change them
periodically), this clearly goes against the notion of a
"personal work station” — and is therefore often not done.

Ancther variation on this theme is provided by
short-cuts. These are methods that circumvent ordinary
controls, designed to ensure privacy and integrity. In most
cases these short-cuts are used for convenience, and
again they provide attackers with a convenient means of
penetrating systems. For example, in the November 2
incident the perpetrator toock advantage of such a
short-cut. : S ’

Taken together the changes in computing milieu and
the related emphasis on ease of use of computing
equipment provide an answer to our original question,
namely why computer virns attacks had not occurred
earlier: while the programuning techniques used to design
viruses were certainly kiiown for quite some time, it was
widespread networking together with the decentralization
of control that provided the fertile soil in which computer
viruses could flourish. - ‘

1.3 Potential for Damage
Before 1988, several rhinor incidents had hinted at a

potential for major problems related to the organized and
widespread subversion of computer systems, and most

10

