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Prefa_ce

A so-called “effective” algorithm may require arbitrarily large finite amounts
of time and space resources, and hence may not be practical in the real world.
A “feasible” algorithin is one which only requires a limited amount of space
and/or time for execution; the general idea is that a feasible algorithm is one
which may be practical on today’s or at least tomorrow’s computers. There is
no definitive analogue of Church’s thesis giving a mathematical definition of
feasibility; however, the most widely studied mathematical model of feasible
computability is polynomial-time computability.

Feasible Mathematics includes both the study of feasible computation from
a mathematical and logical point of view and the reworking of traditional
mathematics from the point of view of feasible computation. The diversity
of Feasible Mathematics is illustrated by the contents of this volume which
includes papers on weak fragments of arithmetic, on higher type functionals,
on bounded linear logic, on subrecursive definitions of complexity classes, on
finite model theory, on models of feasible computation for real numbers, on
vector spaces and on recursion theory.

The Workshop on Feasible Mathematics was sponsored by the Mathematical
Sciences Institute and was held at Cornell University, June 26-28, 1989.
The principal speakers were M. Ajtai, L. Blum, S. Buss, P. Clote, S. Cook,
J. Crossley, J.-Y. Girard, Y. Gurevich, K.-I Ko, D. Leivant, A. Nerode,
J. Remmel, A. Scedrov, G. Takeuti, and A. Urquhart. There were shorter
talks by J.C.E. Dekker, I. Ferriera, J. Foy and J. Krajitek. H. J. Hoover did
not speak at the workshop but contributed a paper to the proceedings.

These proceedings illustrate the diversity of talks at the meeting. We would
like to thank the speakers for the lively exchange of ideas during the talks.
The editors would also like to thank the Mathematical Sciences Institute of
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Cornell University , and especially Anil Nerode, for their financial and logistic
help in making this meeting possible. We would also like to thank the staff of
MSI for their help in organizing this meeting.

Most of the papers in this volume have been refereed; however, four of the
speakers, L. Blum, Y. Gurevich, D. Leivant, and A. Urquhart submitted
abstracts of their talks which were not refereed. We would like to thank the
referees for their consciencious efforts in reviewing the rest of the articles.

Samuel R. Buss and Philip J. Scott
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PARITY AND THE PIGEONTOLE PRINCIPLE

M. Ajtai

INTRODUCTION. The Pigronhole Principle is the statement {hat
there is no one-to-one map of a scl of size n into a sel of size n — 1.
This is a theoremn of Peano Arithmetic that is it can be proved using the
axioms of complete induction. A weaker version of Peano Arithmetic is
1A where we allow only bounded formulas in the induction axioms, that -
is for each bounded formula §(#,y) the corresponding induclion axiom
YE((#(Z,0) AV(S(F,y) — ¢(Z,y+ 1)) - Vz¢(Z,2)), where a formula is
called bounded if it contains only quantifiers of the lype Vo < y or 3z < y.

A. Woods (sce [Wo] or [PWW]) proved Lhat the existence of infinitely
many prime numbers can be proved in IAq il the pigeonhole principle
is a theorem of this system. A. Wilkie (sce [Wi] or [PWW]) has found a
weaker version of the Pigeonhole Principle which indeed can be proved, and
still imphes the existence of infinite number of primes, in a system which
is somewhal sironger than IAg, but the question about PHP remained
unsolved. Paris and Wilkie [PVV] asked whether PHIP can be proved in
IAo(f). (I it can be proved in this extended system then it can be proved
in JAp too. We get 1Ao(f) from 1A, by adding a unary function symbol
J and allowing to use il in the induction axioms. Now the Pigeanhole
Principle is the stalement that for auy z the restriction of f onto z is not a
one-to-one map of  into z —1). The answer is negative (c.f. Ajtai [Aj2]),

the Pigeonhole Principle cannot be proved in IAq(f), actually il is possible



2 Miklos Ajtai

to add to any nonstandard initial segment ({0, 1, ...,n—1}, +, x, <) of Peano
arithmetic a function f violating the Pigeonhole Principle for n in a way
that the axiom-schema of complele induction {upto n and so uplo any fixed
powct of n) remains true in the extended model. This result shows that
the Pigeonhole Principle for the number n is in some sense stronger than
complete induction upto n.

In this paper we show that the assertion that the cardinality of a set
cannol be even and odd at the same Lime is stronger than the Pigeonhole
Principle in the same sensc. More precisely let PAR, be the following
stalement: .

the set 2n + 1 = {0,1,...,2n} has no parlilion into subsels with two
elements.

We show that PAR, is stronger then the Pigeonhole Principle in the
following sense:

Let PIIPAo be the axiom-sysiem what we get from TAg bv adding
for each bounded formula ¥(Z, z, u, v} the following axiom “for all £ and =z
if u= f(v) & ¢(Z,2,u,v) is a funclion defined on z with values in z — 1
then there are two different elements of z where it takes the same value”.
(Obviously this can be expressed by a firstorder formula).

P H PAg(R) will be the axiom-system what we get from PIf PAq if we
allow to use the binary relation symbol R in the bounded formula ¢ in the
PHP axioms. Our main result is that the following stalement cannot be
proved in PHPA(R)

“Yz if R restricted to the sel 2z + 1 is a pariition of 2z 4 | then there
is at least one class of it which does not contain exactly two elements”.

We will not work directly with the PH PAo(R), but, like in {Aj2], we
“will consider an axiom-system which describes the following structure: the
universe is the set of natural numbers from 0 Lo n and the relations are the
arithmetic operations and ordering upto n. Addition and mulliplicatlion
will be only partial functions. (The choice of these relations is somewhat
arbitrary but as we will sce for our present purposes it has essentially no
importance at all.) Now we accept the Pigeonhole Principle for n, that is
an axiom-schema which asserts that if a map of n into n ~ 1 can be defined
by a firstorder formula in this structure, then it will not be onc-to-one. We
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will show that PAR,, cannot be proved in this axiom-system in other words
we prove that if we add a relation symbol R to the system and we allow R
in the Pigeonhole Principle axioms, still it is consistent that R is a parlition
of the set 2n+1 = {0, 1, ..., 2n} into subseis each with two elements. Like in
the case of PH P versus complete induction, this consistency result remains
valid in a much stronger form. We may add arbitrary axioms to the system
which do not contain R and consistent to Peano Arithmetic (that is axioms
which hold in an initial segment of some model of Peano Arithmetic) or
we may add arbitrary new relation and funcilion symbols and new axioms
about them not containing R buti consistent to Peano Arithmetic (in the
above sense), and we may add the PHP-axiom for n containg all of the
relation and function symbols together with R, and still PAR, remains
unprovable. ‘

There is one difficulty which did not arise in the case of induction/PIIP.
Namely complete induction had the nice property that if it is true up to
n than it is also true upto any fixed power of n. This can be proved by
reapeatedly applying the induction axioms. We do not know whether the
Pigeonhole Principle has this property, actually it seems more likely that
e.§. PH Pz, cannot be proved from PHP,. We will prove however, (and
this is necessary for the independence concerning IAo(R)), that PAR,
cannot be proved even using PH P,. where ¢ can be an arbitrarily large
constant.

The structure of the proof is similar to the proof given in [Aj2]. Ac-
tually there is a part of the pfoof which can be done by modifying Lhe ar-
gnuments given there in a noncssential way. We will describe the necessary
changes, but will not repeat the proof. (This concerns the combinatorial
part of the proof given there).

A part of the proof is extending a model by adding a new relation to -
it. Asin [Aj2] this is done by some finile version of forcing exactly the same
way.

The essential new part of the proof is to reduce the question of un-
porvability to a combinatorial lemma and the 'proof of this lemma. This
combinatorial question is of completely different character than the one’s
handled in [Aj2] or [Aj1].
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1. In this section we give a rigorous formulation of our main result and
explain the modcl theoretic part of the construction. We essentially follow
the same way as in [Aj2] with the obvuius necessary changes. :

H M is a model of Pcnno‘l\rith-xnétic and n € M then M, will denote

Ahe vet {z € MM 2 <o} Supposc that A is a k-ary relation delined
on A, whete k is n natural number. We say that A is definable in AL
ihere is a firstorder formuia ¢z, ..., 1;,3;)‘0[ Peano Arithmetic with the
frec variables 2y, ..., Zk, ¥ and thern is a ¢ ¢ M su that for“all Ty, Tk € M
we have Alzy, ., xx) if M E $(@1, . Tr,c). I gis a funcion defined on
a subset of M, who_se values are in M, Lhen we say that the function g is
definable in A if the celation %2y = g(zy)" is definable in M. Obviously
thene exists a single firstorder Ganmla é(z, zy,y) 50 thal for cach g M-
M, il g is definable in A then lhere cxists @ ¢q € A so that for a!
21,22 € M we have 2 = g(a2) il M {= ¢z, 24, rg). We will suppose that
for each g a ¢, is fixed (e.g. the sinallest une with the required properties).

Definition. Let Lo be the langnage with the binary relation symbols
=,< and the ternary relation symbols +,%. Let A be@ k-ary relation
symbol, l¢! i be anew binacy relation symbol, L = LoU{A}, L' = Lu{R}.

Definition. Suppose that 7' is a theory of the language 1. We say that
T describes a large initial segment of Peano Arithmetic if the followiag
holdn: _ )

For all nal.n_ml mumbers ! there is a medel M of Peano /irithmelic
aud an 1 € Af so that M j= w > [ and there is a k-ary relation 4 on-
the set $0,1, .., n — 1} which is definable in M so that with the universe
M, = {0,..,n — 1] and the inteepretation 1; 7(A) = 4, (+) = +arim.,
1{x) = Yarlan,, (L) =<pm ar, we have M, e, T

Now we want Lo give an axiom-sche:na which describes the Pigeonhole
Principle. As we have mentioned in the introduction it will ol be enough
to prove that PAR, is independent of ZJT P, bul we want o prove mde-
vendency from I"H P, for any constant «. In the present situalion this
means that, when working with M., it is not enough to assume that there
is no firstorder definable one-fo-one fanclion which maps the universe inlo
a proper subset of it but we need this statement for the sct ofe-tuples taken

from the dniverse, for any nalural number ». 8o in our axiom-schema Lhe
b
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axioms will hdave two paramelers, one is the firstorder formula which defines
the map, and the other is the natural number ¢, .
Definition. Let c.be a natoral number. In the following definition i, i
and § will hé abbreviation for uq, ..., t._t, Ya, ..., Ve—1 and yo, ..., ¥i -1, where
i can be an arbilrary natural number. Let dJ(ﬂ, 4, %) be a firstorder formula
of the fanguage 1'. We will write i = [¥(®) for $(#, B, %)- ‘We will call the
following sentence the Pigeonhole Principle with parameters ¢, e
PHPY = Vy(Vidld ¥ = fi(i)) — (Vi -5 = fY(il)) —
— (T T TA SO = F7@). £

The theory consisting of the sentences I P*¢ Tor all firstorder forinula

¢ and natural number ¢ is called the axiom-schema for the Pigebnhdic‘
T’ri.’iciple.

Definition. The expression “Uhe cardinalily of the universe is odd” will
be an abbreviation of the firsterder sentence: 73r, y x is the largest clemnent
of the universe and = = 2y”. {Fhe universe has n clemeiils and the greatest
one is n — 1) “The parity principle for 7 will mean the foHowing senlence
of L': “if the cardinaiity of the universe is odd then R is not a partition of

the universe into subsels with two elements.” -

Theorem A1. Supposc that 7" is a theory of the language 1. which
describes a large initial segment of Peano Arithmetic.  Then the follow-
ing theory in 1 is consigtent: T4 “the axiom-schema for the Pigeonhole

Principle” + - “the parity principle for R”.

The proof of Theorem Al actually gives the following:

Theorem Al'. Assume that M is a model of Peano Arithmetic, n
is an odd nonstandard clement, of M and A is a k-ary relation on {he
sel M, = {0,1,...,n — 1} definable iw' M where k is a standard natural
number. Then there exists a partition 1 of n into subsels of size 2 se that in

the structure (Mo, A, R) the “axiom-schema for the Pigeonhole Principle”
haolds.
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Defintion. If P is a partition of the set § we call P a 2-partition iff
every class of P contains exactly two elements. If P is a 2-partition of some
subset of 'S then we call P a partial 2-partilion of §. We will consider
partitions as the set of their classes, so e.g. P C @ means that each class
of P is a class of Q too. We call the partial 2-partitions P, Q compatible if
every class of P is either a class of @ oo, or disjoint from every class of Q.

Assume that P is a partial 2-partition of the set S and V is a subset
of §. V covers P iff each class of P contains at least one element of V. V
is inside P if V C |JP. V supports P iff it is inside P and covers P.

Proof of Theorem Al. Suppose that T is given. Then there exists
a countable nonstandard model of Peano Arithmetic A, so that n is an
. odd element of M, M,, = {0,..,n — 1} is infinite and M, |=, T, where
r(A) = A, and A is a k-ary relaiion on {0,1,...n — 1} which is definable in
M.

Suppose It is a 2-partition of M,,.

Let # = o4 be an interpretation of the language L' on the universe
M., 50 that o is an extension of 7 and o(R) = .

Obviously =, T A~ “the parity principle for R”.

It is sufficient to prove that for a suitable choice of R we have k=o “the
axiom-schema of the Pigeonhole Principle”.

2. THE CONSTRUCTION OF R .

Definitions 1. Let If, = {glg is a partial 2-partition of M, and g is
definable in M}.

2. M € > 0 is rational then let

pe={g € Hal| M = 4Ugl < n - n"}, (since g is definable in M,
{U gl is also definable in M. Although n* is not necessarily defined in M
still the inequality “a > ¢*” can be defined in the natural way in M for all
a,b € M and rational ¢ > 0).

p = U{pele > 0, ¢ is rational }. (It is important in this definition that
we take all rational ¢ in the world, not in M.)

We will consider p as a partially ordered set with the partial ordering:
Vo,hepg<hifhCyg.
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3. Suppose that D is a subset of p. We say that D is dense iff for all
g€pthereisa he D withh <g.

We say that the dense set D belongs to M iff there exists a firstorder
formula of Peano Arithmetic ¥(z,y,z) and ab € M so that forall g € p we
have: g € D iff (there exists a natural number k so that M = ¢(c,, k, b)).

4. Let G be a subset of p. We say that G is generic over M iff

(1)ge G, hep, g< himpliesh € G,

(2) forall g,¢' € Gthereisa he G withh<gand h< g,

(3) if.D is a dense subset of fp, which belongs to M then GN D is
nonemply. .

5. Suppose that G is a generic subset of p. (Since M is countable it is
easy to prove the existence of a generic subset G). Let R be the union of
all partial 2-partitions in G. Property (2) from the definition of a generic
set implies that Risa partial 2-partition of M,. For each fixed i € M,
the set D = {g € p|i € |} g} is dense, moreover the definition of D and p
implies that D belongs to M. Therelore by property (3) of the definition
of generic sets, J(R) = M, so R is a 2-partiton of M,.

We will prove that if o(R) = R then

k= “the axiom-schema of the Pigeonhole Principle”.

Definitions. 1. Suppose that ¢(yo,..., y;) is a firstorder formula of I/,
6o,...,8; € M,, g € p. We say that g | 4(ao,...,a;) ilf for any generic
subset G of p with g € G we have M, |=,, #(ao, ..., a:). ‘
2. Ifiis a natural number then M} will denote the set of i-tuples from
M. B

3. Suppose that i is a natural number and X is a relation on Mi. We
say that X is in o if there exists a natural number j and a firstorder formula
#{zo, .oy Zio1, Y0, oy Yj-1) 80 that for some by, ...,b;_; € M, we have that
for all ag,...,ai-, € My: X(ao,...,ai_1) il k=, #(ag, ..., ai-1,bo, ..., bj~1).
(We will somelimes write X(ao,...,a;—1) where strictly speaking we mean
the defining formula ¢(ay, ..., ai-1,bo, ..., b;-1).} 1 i, are natural numbers
and Y is a (possibly partial) function defined on M: with values in M

then we say that Y is in o iff the relation u = Y(v) on Mi*" isin o.
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Lemmn T1. Suppose that i is a natural number, G is a generic sel,
and X is a relation on M} so that X is in o, then the lollowing conditions
hoid

(011) for all ag,...,a;y € M} there is a g € G so that g -
Xao yaiy) ar gl = Xlan, oy mia). '

(11.2) There is a relation “g f- X{a, ..., a5-1)" definable in M such
that ioc all g € p and all an, ..., eco € ML, “g ll- Xlag, .. ai-y)” implics
g = X(ro,enaioy). and if 3y € G gl ‘,\'(rm,...,n;_l) then 39 € G
“g It Ao, i) '

(T1.3)forall ' € p thereexist ah € ¢ b < b, a natural number k aud
a function 4, which is definable in M so that foralla € Al
of A, with k eleinents, and Jur alf 2-partitions Q, if Q is supported hy d(a)
and compitible to k then either “h U0 = X{a)” or “hUQ - ~X(a)”.

(T1.4) I 1= %0 2ud X{a) is of the lorm v = Y (&), where a = {n,v),

d{a) is a subset

w1 & ME and Y is & (partizi) function inside e, then the function d can

be chasen with tie property Y, vy’ € MS d{(n, v)) = d{{u,v")).

Remark, We may suppose that d(a) € M,, —J h since Lthose classes of
€} which contain at least one point fronn | J 7 coincide with the corresponding

classes of h.

We will srove this Lemnna in seclion 4, more precisely we explain how
i ’ A
the proof in [Aj2) can be medified Lo our present needs. The rext section
coulains the essential new part of the proof, namely we show thal Lenuna
1 ! ¥ B

Tt implies theorem Al and Al

3.

Suppose thal k=, -~ “the axiom-schema of the Pigeonhole Principle”.
Tiis imphies thal there is 2 natural number ¢ and a one fa one map of ¥
of M7 into, say, M7 —(0,...0) so that Y isin @ Lei h € p and d he the
funation with the propertics listed i (T1.4) and Y7 be the inverse function

of ¥ (¥ in not necessarily definedseacr ywhere). According to (T1.1) we may
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also suppose that b - “Y is a onc-to-one map o~ MS into MS - (0,...,0),
and Y' is the inverse of V.7

Let d’ be the function corresponding to V' as described in {T1.4) and
sia) = d{a) Jd'(a) for all @ € M7 We tiay suppose that for all @ the size
of the set 1{a) is the same nataral nuinber, (if necessary we inay increase
some of them). \We inay also sssume that A and I corresponding te ¥, Y
in Leuuna 71 oo the same. (Oihrrwise we inay take a comran lowerbound
of them in €7) Since both g and the relation fi- are delinable in A7 there
are nctions £, g definable in AT with the following properties,

If ¢ ¢ A7 then Tor any partial 2 paitition @ supported by p(s) and
comnatible wo i we have )

(i AU ii-Yie) = (e @) and

(i) 10 glo, ) is defined thew AU Q Y- V(a) = gia, Q).

’

it g(n, Q) = pob defined then o U Q@ “V{(c) s not defined”™,

() and (i) imply that he funciions p, f,g salisly condiiions
(FC},... (D) bsied below. We may suppose according to the remel af-
ter Lemma Tt thal ple) C Ay — A Assume that A F= = {n-- ).
We will identify m and n— it so we will aszume thai pla) € e Since
M =0 we will identify MS and n€ =14 We will suppose that 1 mnaps £

into £ — {0}.

(FO) i mups £ into the set 7' of (unordered) k-tuples formed from the
clements of m. ‘The domain of [ is the set of all pairs =, I’ so that z € 7,
I’ is a partial 2-partition of nr and g} supporls P. The domain of gis a
stubsetl of the set of all pairs 3, ¢ se that ¥y € 7 (2 is a pariial 2 pariition of

m and w1 suppoits Q.

Conditions (F1)-(1F4) must hold iov all valves ol z, 9, 7, Q) where z,y €
£, P,Q are compalible partial 2-partitions of the set m, u(z) supports P

and p(y) supports Q:

(F1) [z, P) <k, e, P)£ 0
(b2) i g(a, ') is defined then g(=, ) € 2. (;{«, P’) is nol necessarily

detined ior all z, PP wilh the given oropariy)
y a8 nroy A\
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‘(F3) if 2,y are different elements of ¢, then f(z, P) and f(y, Q) are
also different.

(F4) y = (=, P} ifl (g(y, Q) i defined and z = 9y, Q))-

(F0) repeats the definition of g, f and g. (F1) follows from the fact
that the range of Y is £ — {0}, and (F2) holds since ' is a partial function
with range in £. (F3) is true since Y is one-to-one and P, @ are compalible
(so there is a h” < h € G which contains both). If P,Q are compatible
then by (T1.4) we have that for some y € £; PUQUk |}~ y = Y(z) which
implies (F4).

Definition. Suppose that k, £, m € w. We say that W1(k, ¢, m) holds if
there exist functions i, f and g so that (F0),...,(F4) are satisfied.

Our previous observations imply the following:

Lemma MO. If|=, — “the axiom-schema of the Pigeonhole Principle”,
then there exists a (standard) natural number k and nonstandard elements
¢, m of M so that M = W1(k,{,m)

To get a contradiction it is enough to show that Peano Arithmetic
exludes the existence of numbers &, £, m with the given properties.

Lemma M1. Vk € w if m is a sufficiently large natural number and
¢ € w then WIi(k,{,m) does not hold, mbreover this statement can be
proved in Peano Arithmetic. ’

Remark. The fact that the first statement of Lemma M1 can be proved
in Peano Arithmetic is only important for showing that our consistency
result is a theorem of Peano Arithmetic. If we know only that the first
statement of Lemma M1 is a theorem of ZFC then we may work with a
nonstandard model M of Peano Arithmetic which is elementary equivalent

to w and get the same result, now proved in ZFC.



