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CONSULTING EDITOR'S STATEMENT TO THE FIRST EDITION

One of the difficulties in teaching contemporary biology is to find
a statistics text that joins biology to mathematics in a marriage of
love, rather than of convenience. Dr. Lewis has been outstandingly
successful in this difficult task for two reasons. First, he has based
the book on sound mathematical principles and, second, he has
copiously illustrated these principles with the type of biological data
that belongs to today. The book gets right down to fundamentals by
discussing the relation between probability and randomization, and
then deals with random selection and the description of data. A
satisfactorily brief chapter on the ‘“normal” curve leads first to
sampling and the universe of discourse, and then to a consideration
of the null hypothesis. The student is then taken smoothly through
regression, correlation, enumeration statistics, Chi square, and the
analysis of variance to a thorough discussion of tolerance limits,
including a chapter, rare in biology statistics books, on quality
control and its application to biological problems. The book comes
to an end with discussions of alternatives to the null hypothesis,
sequential analysis, and a chapter on nonparametric statistics. Each
of the sixteen chapters has at its end, for ready reference, a summary
of the chapter. The appendix has an unusually full set of those
tables necessary to the working statistician.

This book is what I have long wanted for my own course in
biostatistics so that I welcome it as an admirable newcomer to the
REINHOLD BOOKS IN THE BIOLOGICAL SCIENCES, not only as
an editor, but also as a teacher.

PETER GRAY



PREFACE TO THE SECOND
EDITION

When the first edition of this book was written over 15 years ago,
several topics were included that seemed useful and important for
biological investigations. As the years passed there was little need to
use them either directly or in consultation, and our view of their im-
portance has been drastically revised. At the same time topics we then
regarded as less useful we have now come to consider as essential.

In spite of these misguided enthusiasms the original edition and its
Spanish translation continue to be used. It is gratifying then to have
an opportunity to make important improvements in this second
edition. This introductory text should now be more directly helpful
in the evaluation of medical and biological data and in the planning
of investigations.

For all that has been done by colleagues, friends, and loved ones
to help me, my gratitude is undiminished by the passage of time. My
effort here to provide a lucid introduction to biological statistics is in
part an expression of my appreciation.

A.E. LEWIS
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PREFACE TO FIRST
EDITION

If this were the first book ever written on biological statistics, this
author’s task would have been a simple one. There are, to be sure, a
remarkable number of texts on this subject as well as on the subject
of statistics in general. These vary from simple formularies with
instructions covering typical applications to sophisticated treatises on
statistical mathematics. To a degree these would appear to match
the particular needs of specific groups of students with varying levels
of mathematical skill. However, in spite of the wealth of available
choices, a substantial gap remains which, hopefully, this book will
fill.

This book is designed for students in biology and medicine who
have reached the stage where they are ready to judge data and to
begin their own investigations and experiments. It is assumed that
these readers are able to follow ordinary algebraic manipulations. A
background that includes calculus would guarantee an adequate
mastery of the necessary algebra, but calculus is not required for this
text. On the other hand, the student who has had no algebra beyond
the high school level and has avoided using even this will find some
portions of this book a little tedious.

Relatively little mathematical skill is demanded of the reader, but
at the same time the aim here is to provide sufficient insight into the
processes of statistical analysis to use them intelligently. The book is
intended to take the student beyond the usual introductory exposi-
tions of the r-test, x?, regression, and correlation. Particular care has
been given to the exposition of the analysis of variance; even if this is
not included in a one semester course, the student may need it later
in his career for the design of experiments. Other items presented
that are not usually included in these elementary courses are quality
control as applied to biological and clinical investigations, some
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nonparametric methods, elements of sequential analysis, and hypoth-
eses testing with particular emphasis on their relationship to determi-
nations of sample size. This text should continue to serve the
student long after the completion of formal course work.

Wherever possible the algebraic developments have been linked to
situations. Since these expositions rely heavily on intuitive reason-
ing, they are often lacking in either mathematical elegance or rigor.
However, this book is not designed for mathematicians, but for
biologists and clinicians who otherwise would not find this material
in a form easily intelligible to them.

For whatever merit this book may possess I am indebted beyond
measure to those who have taught me. My interest in this subject was
initiated by the late F. W. Weymouth who along with John Field, I and
Victor E. Hall guided my first struggles with biological measurements
in the Physiology Department at Stanford University. For the courage
to look further into the theoretical basis of measurement, I must thank
my former colleagues at U.C.L.A_., Moses A. Greenfield and Amos
Norman. Their friendly and informal discussions ranging from games
theory to mutation rates made me aware of the role of probability
theory in areas outside the confines of my own special interests.

Most of this book was written during the time that I was responsi-
ble for the operations of the clinical laboratories and for the training
of residents in Clinical Pathology at the Mount Zion Hospital and
Medical Center in San Francisco. I shall always gratefully remember
the challenges and kindly encouragement of my colleagues and
students at this institution.

I am indebted to the Literary Executor of the late Sir Ronald A.
Fisher, F.R.S., Cambridge, to Dr. Frank Yates, F.R.S., Rothamsted,
and to Messrs. Oliver & Boyd Ltd., for permission to reprint Tables
Nos. A2, A3, A4, A7, and A8 from their book Statistical Tables for
Biological, Agricultural and Medical Research. 1 am indebted to the
RAND Corporation of Santa Monica, California for permission to
reprint the material in Table No. Al from their publication, A
Million Random Digits. 1 am also indebted to D. L. Burkholder,
Editor of The Annals of Mathematical Statistics for permission to
reprint Table A5 from ““Tabulated Values for Rank Correlation,” by
E. G. Olds, appearing in Volume IX of the Annals for 1938.

Just as actors need a producer and a stage to reach their audience,
an author needs a publisher to provide the management of the
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complex operations of the publishing industry. The staff of the
Reinhold Publishing Corporation has been most helpful with this
venture from its inception. I am particularly grateful to Mr, Leonard
Roberts, Editor, for his stimulating encouragement and to Mrs.
Cynthia Harris, Copy Editorial Supervisor, for her patience and for
her meticulous review of the manuscript.

Finally, I must pay tribute to my wife and to my daughters. With-
out their patience, understanding, and encouragement this project
would have ended with Chapter I. This book is dedicated, then, to
Doris, Joan, and Elizabeth from an affectionate husband and father
as a small measure of compensation of the time together that we
have lost forever.

April, 1966 ALVIN E. LEWIS
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1
INTRODUCTION

While the mathematical theory of statistical methods is not usually
part of the standard equipment of students in biology, statistical
reasoning and techniques can be mastered and applied by anyone
with a fair grasp of algebra. Nothing would be gained by suggesting
that these methods are easy. They do require thought and applica-
tion, but their inherent interest and obvious utility can make them
reasonably pleasant and satisfying.

The subleties of statistical reasoning often escape the student in
his first encounter with statistical methods. Obtaining the answer to
textbook problems is only the first step in mastering statistics. Mys-
tique has no place in science, but in an elementary exposition of this
kind intuitive understanding will have to be substituted for several
years of mathematical preparation. The purpose of this text is to aid
the student in acquiring a useful mastery of the subject by drawing
wherever possible on the commonsense experience ofdailyjudgements.

Consider first the well-known average and some of its ordinary
uses. For example, suppose we need to order a ten day supply of
food for 100 experimental animals. If the average requirement per
animal for ten days is known, all we have to do is multiply this
amount by 100. Even though some animals eat much more than
the average, we do not need much statistical knowledge to feel
reasonably sure that the large eaters will be balanced by an almost
equal number of small eaters. On the other hand, if instead of 100
animals, we have to feed only one or two, we would not be surprised
if the average amount of food turned out to be either excessive or
inadequate. This obvious example gives an intuitive basis for making
a few useful general statements.

First, there is the average itself. If the average food supply should
be given in a handbook or manual, we would assume that the value
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reported is a summary of some comparable experience with a large
group of animals, although this assumption might not be made con-
sciously. This common average is more properly called an arithmetic
mean in the language of statistics. Asshall be pointed out later, there is
also a geometric and a harmonic mean. Each of these is quite different
from the arithmetic mean. Generally, when the term mean is used
without a modifier, the arithmetic mean or average is implied.

The mean, then, regardless of type, summarizes in a single number
many individual values. A summarizing value of this kind is neces-
sary, because the human mind is unable to grasp multiple impressions
simultaneously. Again, we intuitively or unconsciously assume that a
mean or average is significant and useful only when it summarizes a
large number of values. We assume that the average food require-
ment in the handbook was obtained on the basis of a large number of
animals and do not expect to apply this value precisely unless we too
are dealing with a large number of comparable animals.

So far, most of the discussion has been an elaboration of the
obvious; this is necessary perhaps, but fairly obvious all the same.
One assumption was noted, however, which may not be obvious and
in spite of our intentions may not always be true. This assumption is
that each animal eating a certain amount more than the average
would be matched by another in the group eating almost the same
amount less than the average. In other words, the animals could
probably be paired off so that the average for each pair would equal
the average for the group. This implies that the frequencies of each
value are symmetrically distributed on either side of the mean.

Another notion, which is readily accepted, concerns the range of
food requirements. The range of requirements is the difference
between the largest and the smallest values in the group. Without
any intensive thought, or recall of past experience, most of us would
readily agree that extremes in food requirement are unusual. That is,
most of the animals would have requirements not too different
from the mean. The extremes at either end of the scale represent a
small minority.

So far, the discussion has been an intuitive, qualitative description
of a common or normal frequency distribution. Symmetrical fre-
quency distributions with the majority clustered about the mean
occur in numerous instances. In the study of statistical analysis these
concepts will be used quantitatively.
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Up to this point, animal dietary requirements have been used as an
example of the average and the distribution of values of a continuous
variable. There are many kinds of measurements that fall into this
category. These are measurements that increase by vanishingly small
amounts, the smallness being limited by one’s ability to discriminate
correspondingly fine differences. For example, if we were to take
1000 people, all of them weighing between 150 and 151 pounds, we
could, if the scales were sufficiently sensitive, arrange them in order
of increasing weight. Obviously, in order to do this, we would need a
scale that could discriminate differences smaller than 171000 of a
pound. Theoretically, with an unlimited population to draw from,
we could take 1000 people weighing between 150.002 and 150.003
pounds and also arrange them in order of weight if the scales were
sensitive to less than 1/1,000,000 of a pound. Needless to say, in
real life there would never be any occasion to carry these measure-
ments to such hair splitting accuracy. Nevertheless, a mean value of,
say, 150.01 pounds has conceptual reality.

On the other hand, if a statistician states that the average family
has 2.3 children, we balk at the image of three tenths of a child. We
do not for a moment deny the utility of this mean for certain eco-
nomic purposes, but we can immediately perceive that another class
of values is involved. These are called discontinuous variables. They
are obtained by counting or simple enumeration rather than by
measuring against a scale of some kind. In genetics we count prog-
eny with distinctive characteristics; in studying epidemics, we count
cases; in bacteriology we count organisms. In all of these examples
the units are indivisible. The count moves up discontinuous steps
instead of rolling up a continuous slope.

Our commonsense, intuitive grasp of chance and counting again
comes to our aid in understanding the statistical behavior of discon-
tinuous variates. Indeed, our grasp of probability theory, which is
needed in order to make statistical analysis useful, has its roots in our
intuitive notions about such variates. A simple example will suffice
for now, and although superficially it may appear trivial, the same
example will be explored in considerable depth in a later chapter.

Suppose we take 100 coins, shake them in a box, and see how
many turn up heads and how many tails. Without actually doing this
experiment, we expect close to 50 heads and 50 tails. Remember
that in performing this task, we would find the number of heads by
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counting, not by measuring. There might be 47 heads instead of
the expected 50 but obviously there will not be 47.4 heads. The
important intuitive point here is that we expect close to 50 heads.
We would be quite astonished if all of the coins turned up heads. We
would, a priori, (i.e., before any actual experience) state with confi-
dence that such an outcome was improbable.

Notice that, being careful scientists, we did not say impossible. As
a matter of fact, we realize that if the experiment were repeated over
and over again an enormous number of times, eventually 100 heads
would turn up simultaneously. We do accept the inevitability of an
improbable event given enough trials. While 100 heads turning up at
the same time might be regarded as a near miracle, biologists in
general accept the more nearly miraculous events of evolution as
purely fortuitous.

In these introductory comments we have introduced some new
terms, or more likely, we have introduced some old words in a new
light. We have not attempted any rigid definitions so far. For
pedagogic reasons, whenever it is possible, precise definitions will be
given as summaries after the sense of a discussion has made them
useful,

Before these introductory comments are concluded, the meaning
of the words statistics and probability will be considered. Statistics
may be defined as the science and technique of gathering, analyzing,
summarizing data, and estimating the probability of inferences from
these data. We shall occasionally use the singular form, statistic, to
refer to a value either observed or generated in a random manner.

Probability is a word that might better be used here without
definition, as its meaning is still a matter of active philosophic
debate. The word shall be used as if it meant the long run relative
frequency of multiple or repeated events.

With statistics and probability defined adequately for present
purposes, it might be useful at this point to indicate some of the
things that statistical analysis is not and to point out the areas where
our technical concept of probability does not apply. Experimenters
should be reminded occasionally that statistical analysis is not a
magic way of converting poor data into good data. Statistical
analysis helps one deal with random variability produced by unknown,
small causes, but it helps little, if at all, in dealing with variability
due to poor or inadequate experimental technique.
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In ordinary conversation we frequently use the words “probable”
or “probably.” For example, we might say that Peru and Guatemala
will probably sign a treaty tomorrow. Notice that there is no way of
giving a meaningful fractional or percentage value to this probability,
since the situation is not representative of a multiple or repeated
event. Another example of the way in which probability may be
misinterpreted is as follows: suppose 100 students apply for admis-
sion to a graduate department which has only 25 openings. At first,
we might think that a friend has a one in four chance of being
accepted and might even make a bet giving odds one way or the
other in the same one to four proportion. This would be ignoring
the obvious fact that although the friend would either be admitted or
not be admitted, the outcome would not be determined merely by
random chance. Random chance would operate only on the probabil-
ity of our winning bets if, in total ignorance of the factors determin-
ing entry, we made the same bet with many members of the group
applying for admission. Insurance companies and bookmakers
operate on this same principle of safety in numbers, but in a nonre-
petitive instance or in the individual case, probability statements may
have little or no valid meaning.

SUMMARY

Statistics may be defined as the science and technique of gathering,
analyzing, and making inferences from data. These inferences are
stated as probabilities. In this connection the term “probability” is
used as if it meant the long run relative frequency of multiple or
repeated events. The data subjected to statistical analysis consists of
two types of variables: (1) continuous and (2) discontinuous. The
former consist of measurements against a scale while the latter
consist of data obtained by counting or enumerating discrete, indivis-
ible units.
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THE RELATIONSHIP OF PROBABILITY
TO RANDOMIZATION

We usually have a clear definition in mind, which is readily under-
stood by others, when using the words or expressions “‘pure chance,”
“probability,” and “random.” However, some difficulty is encoun-
tered when these ideas arc examined as closely as is necessary for
their utilization in making calculations. The most common example
of pure chance is the toss of a coin. Whenever we prefer to let
fate make a decision, we toss a coin. The first official act at the start
of a football or baseball game is the tossing of a coin.

Generally, we accept the notion that heads will occur about as
often as tails and thus that each side has an equal chance of being
favored. At least we feel that “in the long run” the equality will
hold. The important point to notice is the implied condition of a
long run. A sequence or run of three or four heads in succession
would not be surprising. During a trial of ten coin tosses performed
while this paragraph was written, the following sequence occurred.

HTTTTHTTHT

However, our confidence is still unshaken, and we continue to expect
the proportion of heads to tails to even out if the run is sufficiently
prolonged. The basis for this confidence lies in the symmetry of the
coin.

In contrast, consider expectations with a coin flipping machine
constructed as shown in Figure 2-1. If the coin is always placed
snugly against the back stop of the pedestal, if the flipper always
delivers the same amount of force, and if the coin is always placed in
the heads up position, we would expect the coin to show the same
face each time it is tossed. Thus, if the coil came up tails on the first
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o

Figure 2-1. Mechanical coin tosser.

that, given the dimensions of the apparatus, the weight and diameter
of the coin, and the force of the flipper, an engineer skilled in
analytic mechanics could predict the outcome without any experi-
mental trial at all.

Suppose, by way of contrast, we attempt to duplicate the machine’s
consistency by hand. We would immediately become aware of the
many small but almost uncontrollable adjustments that would be
necessary to make our flipping techniques competitive with the
machine. We have already agreed that when the controlling factors
are known, the outcome of an individual toss is known. Therefore,
we must agree that the difference between a completely predictable
outcome and a random outcome is our inability to control or evalu-
ate the numerous, small factors that determine that outcome. In
essence then, at least as far as coin tossing is concerned, the operative
and determining factors in one toss may or may not be dominant in
the next toss. With the machine the results show complete bias;
when we try to imitate the machine by hand, incomplete but fairly
substantial bias is introduced; when we simply toss the coin without
any attempt to control it (i.e., at random), any remaining bias must
be negligibly small.

Thus, random may be defined in a negative way as absence of bias
or of factors known to contribute significantly to the outcome of
any trial. To stress the more positive approach, we may consider a
result to be random when the outcome is determined by the inconsis-
tent interplay of many small factors.
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A slightly more complicated but highly useful example is found in
the classic white ball-black ball problems. Suppose we have in an urn
1000 balls, which are physically identical except that 100 of them
are black and 900 are white. The container is shaken so that the
balls move about at random. Theoretically, it would be possible to
calculate the locations of each of these balls if all the starting posi-
tions, weights, force vectors, etc., were known. Obviously, this
calculation would be too enormously complex to make it worthwhile;
but the final location of each ball would be the result of the interplay
of many small, virtually incalculable forces. In short, the balls would
be distributed randomly.

Suppose further that ten balls are withdrawn by a blindfolded
experimenter and the number of black balls in the sample recorded.
The balls are returned to the container, shaken up (i.e., the balls are
randomly redistributed) and the experiment repeated. This process
is carried out over and over again. Just as in the case of the coin
tossing experiment, we are able to predict a priori that in the long
run, one out of every ten balls sampled will, on the average, be
black. Similarly, remembering the definition at the end of Chapter I,
we would say that the probability of selecting a black ball by chance
from the container is one in ten, or more concisely, 1/10, as we
would say of the tossed coin that the probability of heads turning up
is 1/2.

To emphasize the lesson a little more strongly, consider, for
example, a bag containing only five balls; one is white, and the other
four are black. The experimenter shakes the bag without looking
and draws a ball at random. Its color is noted, and the ball is returned
to the bag. Repeating this procedure over and over again, we would
say, a priori, that the probability of selecting a white ball by chance
is 1/5. Thus, the principal element in predictions of this kind is not
the large or small number of balls used; it is the large number of
trials, or in other words, it is the long run.

The essential point of the foregoing examples is that we can state a
priori the value of the pertinent probability when we know all the
possibilities that can occur at random. In real life, particularly in the
biological sciences, we rarely have such complete knowledge. Instead
of predicting probabilities ahead of time from a knowledge of all the
facts, we have the more difficult task of inferring some fragments of
knowledge from observed proportions in the available data.



