1811

SECRETS OF

SOFTWARE

BY TRUCK SMITH

SECRETS OF

SOFTWARE
DEBUGGING

BY TRUCK SMITH

TAB

TAB BOOKS Inc.
BLUE RIDGE SUMMIT, PA 17214

Apple il and Applesoft are registered trademarks of Apple Computer Corporation.
IBM PC is a registered trademark of International Business Machines Corporation.
Z80 is a registered trademark of Zilog, Inc.
CP/M is a registered trademark of Digital Research Inc.
VIC 20 is a registered trademark of Commodore Business Machines.
Microsoft is a registered trademark of Microsoft Consumer Products.
UCSD Pascal and UCSD p-System are trademarks of the Regents of the University of California.
Visicalc is a registered trademark of VisiCorp.

FIRST EDITION
FIRST PRINTING
Copyright © 1984 by Truck Smith
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Smith, Truck.
Secrets of software debugging.

Includes index.

1. Debugging in computer science. | Title.
QA76.6.56155 1984 001.64'2 84-8792
ISBN 0-8306-0811-7

ISBN 0-8306-1811-2 (pbk.)

Cover photograph by the Ziegler Photography Studio of Waynesboro, PA.

Acknowledgments

NN

I would like to thank my sister and my wife. My wife managed her job, the house, and our new baby
sister made time in her extremely busy schedule to ~ daughter—each one a full time job—to give me the
read and edit the book. She offered valuable com- time to write. -

ments on virtually every line of the manuscript. My

vii

Introduction

—

This is a how-to book: how to debug. My purpose is
to instill and increase debugging skills by analyzing
debugging theory, discussing debugging practices,
and showing many examples.

In our society, we have largely abandoned ap-
prenticeship as an educational means, much to our
detriment. An apprentice learns in two ways. He
learns what the craftsman specifically teaches, and
he learns through observation that which the
craftsman finds difficult to explain. A great deal of
information is lost when we try to teach only
through books.

Debugging is a craft that is difficult to explain.
In this book, I make liberal use of examples. The
examples are in four popular computer languages:
BASIC, Fortran, Pascal, and assembly language.

WHO IS THE BOOK FOR?

The book is intended for programmers at all
levels of experience—novice, intermediate, and
expert. The book only requires that the reader be
reasonably comfortable with a computer language

viii

and rudimentary terminology. Basic concepts such
as branch statement and looping are not defined.

In this book the novice will find comfort and
guidance. The intermediate programmer will find a
wealth of hints and ideas to make debugging easier.
The expert will find an analysis and discussion of
debugging skills not often presented, even infor-
mally.

ORGANIZATION

The six sections of the book are

Overview
Deductive thought
Knowledge
Debugging
Examples

Related topics:

The presentation proceeds from the general and
theoretical to the specific and practical. The first
section, “Overview,” summarizes the debugging
approach and highlights the necessary skills. In the

next section, “Deductive Thought,” I discuss the
general problem solving skills that serve as under-
pinning for the specific problems of debugging.

Next comes the section entitled “Knowledge,”
which covers the computer knowledge that is help-
ful and sometimes necessary to the debugging task.
The following section, “Debugging,” discusses the
specific tools and methods of debugging.

Because it is always easier to learn by obser-
vation and example than by reading theory, I've
illustrated the complete debugging cycle using
three sample programs: one in BASIC, one in Pas-
cal, and one in assembly language. No matter what
language you use, you can follow at least one dis-
cussion.

Finally the section entitled “Related Topics”
discusses testing programs and proving programs.
These concepts are put together in the last section
to provide some additional insight into the process
of creating reliable programs.

The book is structured so that each chapter
builds on the one before it. This shouldn’t discour-
age you from jumping around or turning to the

chapters that interest you most; if you find that I'm
using concepts that need further explaining, just
backtrack or use the index to find where I explain
them. Taken in order, however, the book presents
a total theory of debugging and a practical approach
to making your own programs work. The total
theory and the approach should help your debugging
more than the specific hints scattered throughout
the book.

Most of the examples come from my own ex-
perience on computers from my Apple II, the office
IBM PC, and Zilog Z80 to minicomputers and large
mainframes built by IBM, SDS, Honeywell, Bur-
roughs, and others. Both timesharing and batch
environments are covered in the examples.

All of the examples are discussed in detail to
enable you to understand them whether or not you
are familiar with the computer or the computer
language used. Most examples use BASIC, but
some use Pascal and others use FORTRAN.

Welcome to the black art of debugging. You'll
be challenged and frustrated, and you'll find fun and
satisfaction with every step.

Contents

Acknowledgments
Introduction
Section | Overview

1 The Black Art of Software Debugging

An Example of Debugging—Debugging Is

2 Mental Attitude

The Big Lie—Believe in a Solution—Curiosity—Ego— Relaxation—Intuition

Section Il Deductive Thought

3 Logic
Using Logic—What Is a Proof?—The Problem with Induction—Logical Analysis—ANDs, ORs, and
Implications—Negative Inference—Pigeonholes—The Limits of Logic

4 Assumptions

It's the Computer—Identifying Your Assumptions—Unshakable Assumptions—When to Challenge an
Assumption—It Really Is the Computer

5 Trial and Error
Guesses—Making Gu Testing Gt Getting Only One Answer—Controls

Section Ill Knowledge

6 Concepts
Layers— The Bottom Layer—The Top Layer—Data Representation

vii

viii

15

17

24

32

37

39

7

Attention to Detail

Punctuation—Variable Names—Similar Characters—Comments—Reserved Words—Logical
Operators—Output—Reading the Manual

Program Structure
Grouping—Program Flow—The Effect of Structure on Errors

Section IV Debugging

9

10

Tools
Snapshots —Dynamic Tools—Interactive Tools

Methods

Describe the Problem—Guess Where the Problem Is—Guess What Might Be Going Wrong—Test Your
Guesses— Refine and Repeat the Process—Determine the Fix—Weave It in

Section V Sample Programs

1

12

13

Comparing Files in BASIC
Program Design—The First BASIC Program—Debugging—The Second BASIC Program—More
Debugging—Comprehensive Testing—Living Up tq the Specifications—Summary

A Data Generation in Pascal
Backus Naur Form—Testing the Water—Program Design—The First Program— Syntax Errors—The
Lights Go Out— Initial Debugging—The Revised Program: More Syntax Errors—Debugging— Summary

Radix Conversion in Assembly Language
The Program Design—The Pseudocode in BASIC—Debugging the BASIC Pseudocode—A Skeleton
Assembly Language Program—Adding Single-Digit Multiplication

Section VI Related Topics

14

15

Program Testing
A Little Bit at a Time—All the Possibilities Every Time—All the Possible Paths—Border Points and End
Points—Test Data

Proving Programs
The Stopping Problem— States—The Problem with GOTOs—A Sample Proof

Appendix A Pseudocode
Appendix B The Debugging Log
Appendix C Backus Naur Form
References

Index

54

67

69

75

77

79

125

196

255

257

260

264
267
270
272

274

Section |
Overview

Chapter 1

Yes

Statement 1 Statement 2

Statement 3 Statement 4

The Black Art of Software Debugging

It doesn’t work.

You have just finished coding and typing in
your program. Maybe it’'s 10 lines; maybe it’s
10,000. Maybe you’re working on your home mi-
crocomputer; maybe you're using the largest com-
puter system in existence. The problem is the
same; your program doesn’t work.

Now what do you do?

Welcome to the black art of debugging. It's a
black art because, although almost every program-
mer practices it, very few can tell you how to do it.
Some people seem to have aknack for it, and others
just flounder around changing things haphazardly
until their program works. It’s a black art in spite of
the fact that debugging is really a very simple pro-
cess. This book makes the process as painless as
possible.

The basic job of the debugger is to identify the
problem, find where in the program the problem is,
and figure out what is going wrong so it can be fixed.

Debugging skill comes from ability in three
areas:

o Logical thought
o Attention to detail
e Knowledge

In practice all debuggers use these three skills
in greater or lesser amounts, and if you do any
debugging, you do too. This book will help you
organize your approach and show you how to use
the three areas in your own debugging.

AN EXAMPLE OF DEBUGGING

To illustrate how the debugging process
works, I'll take an example from my own experi-
ence. It's not a programming example, so it illus-
trates just how general the process of debugging is.

My newborn daughter is crying. I have to
find out why and do something about it.

She’s just been fed, so she’s not crying
because she’s hungry.

Are her diapers wet? No, and it’s not
because I've stuck her with a diaper pin either.

Maybe she’s cold. I'll wrap her in another
blanket. She’s still crying so that's not the
problem.

Maybe she just wants to be held and
rocked. That quiets her down for a minute, but
then she’s crying again.

Finally I try burping her. She stops crying
and falls asleep.

In the process of solving my daughter’s prob-
lem, 1didn’t just look at the major symptoms. I paid
attention to the details, such as how long it had been
since she’d been fed. I formed hypotheses about
what was wrong (she’s wet; she’s cold) and tested
them with logic. I used my knowledge: it would be
hard to solve the problem of a crying baby unless
you knew enough about babies to know which end
the diaper goes on.

Because the problem itself was adequately
(and loudly) defined by my daughter, I concentrated
on discovering where the problem originated and
what was wrong. I attacked the where and what
questions simultaneously in a trial and error fash-
ion, using what information I had or was able to
observe to help direct my trial and error efforts.

This example illustrates the debugging pro-
cess very well. Clearly debugging is both a logical
process and an experimental process, and both
parts are important.

The example also illustrates the importance of
mental attitude. Just as in the example, you will find
that most debugging is carried on under pressure.
Usually you are up against a deadline (yours or
someone else’s). The situation is aggravated by the
fact that the actual programming took longer than
people expected it to. It is important to stay re-
laxed. Debugging can’t be hurried, and a brute force
approach may cause as many errors as it corrects.
The best attitude for debugging is to be relaxed and
rational.

DEBUGGING IS
Debugging is (choose all that apply):

e A black art
e A gift (some of us have it, others don’t)

o A different process for each and every per-
son

® Luck

® Natural ability

® Talent

® A skill that grows with time

It's easy to get mystical when you are con-
fronted by someone who is good at debugging. You
have to struggle and sweat to find one simple typo;
the debugging expert flips through your program
once and pinpoints the bug.

There are people who fill in the New York
Ttimes crossword puzzle in ink, too.

The truth is far more prosaic. Debugging is

® The ability to think logically; to puzzle out a
problem

® The amount of knowledge you have (the
more you bring to the problem, the better)

® Creative testing

® Attentive observation

Debugging is far more like solving a crossword
or jigsaw puzzle than it is like sorcery. You do a lot
of hard work and follow a lot of dead-end alleys until
you stumble on the right one.

Is it possible to get a map? Is there any easy
way to the solution?

Yes and no—there are certain ways that are
easier than others, but you have to realize that you
are going to have to do some work. You might as
well go ahead and do it instead of vaguely tinkering
with the program and hoping some brilliant solution
will occur to you.

The debugging process follows these steps:

Describe the problem

Guess where it is

Guess what might be going wrong

Test your guess

Refine and repeat the process until you've
found the error.

Determine the fix

Weave it in

G W

N

These steps are not an algorithm even though

they look like one. They aren’t an algorithm be-
cause the steps don’t really happen one after
another. They are not sequential; they sort of hap-
pen all at once, in an overlapping fashion. These
steps aren’t an algorithm because too much depends
on the debugger making intuitive leaps in the pro-
cess.

Why should that make any difference? Don’t
expect a plug and grind, simple formula answer to
your debugging problems. Debugging requires
exercise of creativity and intuition. This require-
ment is what makes debugging both fun and frus-
trating.

With that in mind, lets look at each step in
more detail.

Describe the problem. Not many debuggers
write down all the symptoms, but it isn’t a bad idea.
Number the incorrect results on your printout;
write down the problems as they occur. Take note
of all the ancillary circumstances too. For instance,
if you are using a microcomputer, you may hear the
disk drive start up. Sometimes such effects will
give you clues concerning where the bug in your
program may be.

Writing down a description forces you to look
at and consider everything. Just as when you are
doing a jigsaw puzzle, you need to look at both the
shape of a piece and its color, when you are debug-
ging you need to note everything you can about your
program’s misbehavior.

Get as complete a description of the problem
as possible. Run as many test cases as you can; try
to set limits on the incorrect behavior. See how
many ways you can get your program to misbehave.
Obtain lots of data to work with.

Of course you won’t have too much to write
down if your program dies completely after you
type RUN, but you can write down everything you
can about the way it dies. If you are on a timesharing
system, sometimes the system will give you a lo-
cation. If you are using a microcomputer, you can
listen to see if the printer or the disk was accessed.

If you have only one run and one page of print-
out fromit, check everything on the page for errors.

Guess where the problem is. This step and
the next one both proceed simultaneously. You may

know where to search for the problem but have no
idea what caused the problem.

For instance, you may have print statements
scattered throughout the program. If you get output
from one print statement, but not from the one fol-
lowing, you have localized the problem. You still
don’t know what caused it.

One way of finding out the location of a prob-
lem is to deliberately place print statements
throughout the program. Another way is to do a
trace on selected variables.

Sometimes you have a guess about what
causes the problem that gives you an idea where to
search. For example, you may identify an incorrect
answer on your printout and say to yourself, “That’s
calculated in the blank routine. I'll look there.”

No matter what the order is; you have to know
where the problem is before you can fix it.

Guess what might be going wrong. As |
mentioned above, this step and the one above usu-
ally proceed in synch. Sometimes you take one look
at your program’s results, and you know just exactly
what the matter is. That in turn identifies where the
problem is. Other times you can tell where the
problem is, but you don’t know what causes it. If
you know where the problem is, you can make a
guess about what's going wrong, based on what you
know about the problem.

Whether you think you understand the nature
of the problem or you merely know its location, you
should make a guess about the problem. Not too
many debuggers write down their guesses. They
think, “It must be in that group of routines,” or “It
looks like this variable is not getting set correctly.”
Sometimes the guess cannot even be coherently
expressed; the guess may be a vague hunch about
some section of the program.

Writing down your guess is not vital. But
writing it down will sharpen your awareness of the
nature of your guess and lay the guess open to more
careful analysis.

These are preliminary guesses. Eventually as
you repeat the process and refine your guesses, you
reach the kind of guess that goes, “The problem is
in line 4320, or “The variable KDC was used in the
subroutine call, not KDS.” From the beginning of

the guess-making process to its end, there is a
continual narrowing in on the right answer, the
problem solution.

Test your guess. Once you have a guess, you
have to test it. You may check over your program
listing. You may make a change to your program or
run it with a trace. You don't necessarily have to
change the program to test your guess. Sometimes
the guess will imply things about your last run of the
program that you can check on the printout.

You may have noticed that some variables
were being printed incorrectly. Your guess may
imply that there should be certain values for those
variables, perhaps equal to another variable or
perhaps powers of two; there are any number of
possibilities. You can go back to the printout and
check. If you don’t have a printout, go back to the
problem description you wrote down in step 1.

Toward the end of your debugging session
your guess will be specific enough that the test will
mean inserting a fix. Most often your test will mean
inserting a print statement somewhere or using a
trace to see if the program flow holds true. You will
test many guesses in the course of solving a difficult
problem. Devise tests that will give you more in-
formation about your problem and point you more
decisively toward the solution.

Refine and repeat. The refine and repeat
step is a constant narrowing in on the problem. It
won't always seem so. Sometimes a guess will lead
you down a wrong path. Sometimes you will spend
hour after hour with no apparent progress. Then, all
of a sudden, you will have a flash of inspiration that
makes everything clear.

The false starts and hours spent going
nowhere are not wasted time. They are part of the
process. Sometimes they provide the necessary
information to make the final brilliant insight possi-
ble. Sometimes they just convince you that there
really is a problem to be corrected. Either way,
some progress is being made.

Whenever it is possible, your guesses and
tests should be designed to carry you further to-
ward the solution—to make it easier for you to
refine your guesses and tests.

A straightforward example of this test design

is dictionary search. If I am looking for a word in the
dictionary, it will not help to let the dictionary
repeatedly fall open to a random page and see if my
word is there. In practice most of us use a succes-
sive refinement approach. If our word is in the last
half of the alphabet, we open the dictionary toward
the end. We then use the information gained from
that page to specify where we turn next; if we are
far from our word, we will turn more pages than we
would if we were near it.

When you are debugging, you continue to re-
fine your guesses until you have identified the por-
tion of the program responsible for the error. This
portion might be as small as one character, or it
might be a whole routine that wasn't completely
thought out when it was originally written. Either
way, you stop guessing once the problem has been
identified.

Determine the fix. If your problem was a
simple one, you may have determined the solution
in the process of identifying where and what the
problem is. A typo for instance is easily corrected
once spotted.

The fix is not always so simple. Perhaps you
have neglected to take care of some special cases in
your algorithm, or maybe the algorithm only works
for easy cases. Sooner or later you will have a bug
that will demand that you completely rewrite a
routine.

Take care in tackling such cases. It is not safe
to blindly insert a few lines into an existing routine;
nor is it ever safe to completely rewrite a routine
under the pressure of a debugging deadline. You
have to decide which alternative to choose;
whether to insert a few lines or rewrite. Granted,
some of the factors influencing your choice will be
psychological, but take as much time as youneed to
analyze your fix. As a rule of thumb spend as much
time on the fix as you spend on your original al-
gorithm.

Weave it in. Weaving in the fix is just an
extension of determining the fix, but it is important
enough torate a step all its own. Don’t blindly insert
a correction. Understand the code you are trying to
correct; make the correction a reweaving job not a
patch.

The extreme example of doing this badly is the
programmer who discovers that a variable is being
set to the wrong value. He doesn’t know why. He
doesn’t care why. To solve the problem, he simply
inserts a line that sets the variable to the right
value.

This practice is not only a barbaric program-
ming and debugging technique; it also creates
problems later. Suppose another error crops up
(and it will; there is always one more error no
matter how clean the program is). Our hapless
debugger (or the poor person who has to follow in
his footsteps) now has to figure out what is wrong in
code that isn’t structurally sound, and the “correc-
tion” may disguise the new error’s source entirely.
Even if the two errors are unrelated, the correction
makes the problem more difficult to solve because
the debugger is never sure that the two errors
aren’t caused by the same portion of code.

Even if no further errors crop up, the same

problems occur if someone wants to add to or
change the program.

The solution? Understand your program and
weave your corrections in so that they become an
integral part of the program. If you are debugging
someone else’s program, weaving in corrections
means using the same programming style as the
original programmer used. Although this may seem
to carry the weaving idea to extremes, it’s not a bad
extreme to go to; you make the corrected program
easier to read and debug because you haven't in-
serted any jarring notes.

No matter how you debug, how experienced a
programmer you are, or what machines or lan-
guages you program, you will follow a process like
the one outlined above. This common sense over-
view describes the backbone of the debugging pro-
cess. The rest of this book elaborates on elements
of the process in order to give you the skills that will
make the whole process faster and easier.

Chapter 2

Yes

Statement 1 Statement 2

Statement 3 Statement 4

Mental

There is nothing more important to debugging than
your mental attitude. All the technical skill in the
world will not help, unless you are willing to ap-
proach your debugging problems in a rational and
relaxed fashion.

In this chapter I will talk about what it means to
be rational and relaxed, and how to maintain a ra-
tional and relaxed attitude.

THE BIG LIE

In the world of human affairs there are two
approaches to any problem. The first is the scien-
tific approach; you assume that the problem has a
solution that is accessible to all. You attempt to find
that solution. The second approach is political.
Knowing that the truth is fuzzy, you essentially
stand up and shout your position until everyone
agrees with you. This second approach is the big
lie.

I'm not saying that all politicians use the big lie
or that all scientists are completely logical. There
is a distinction, however, between the two different

Attitude

types of mental attitudes and approaches to prob-
lems.

No one person consistently uses one view-
point or the other. The attitude of any given person
will vary from moment to moment depending on the
problem, the emotional situation, and other factors.

What attitude is best when you are addressing
the computer? Clearly not the political one; no
amount of smiling or kissing babies will get results.
For example, no matter how many times you retype
the line

L=LEN(S$

to a BASIC interpreter, it will give you an error.
You can shout, plead with the machine, or kick it.
You can convince everyone else that you're right,
but the computer will remain stubborn until you put
the final parenthesis on the line:

L=LEN(S$)

Only then will the computer accept the line.

This example is not meant to indicate that
dealing with the computer is all black and white.
There is usually more than one way to solve a
problem. Sometimes the computer will make mis-
takes. Sometimes the system itseif is wrong.

In my office there is a ZILOG Z80 based sys-
tem. Whenever we turn it on, it executes a self test
program. Three times in ten, the self test program
says there is something wrong with the computer.

Our standard response is to restart the sys-
tem. On the second try the system usually works.

It’s not a question of whether or not there is
something wrong with the system—there probably
is (we'll just have to wait until it gets bad enough to
interfere with operations before we get service—
but by telling the computer it's wrong (restarting
it), we have chosen a political solution.

In practice you will find the political approach
is often tried. This shouldn’t necessarily be thought
a waste of time; it’s often necessary to try the
political approach just to convince yourself that
there really is a problem..

For example I have a Pascal system for my
Apple II. In my initial experimenting with the sys-
tem, I took one of the programs that comes with the
system and tried to modify it. All went well until I
tried to save the modified program. The system
gave me an error message:

FILE ERROR - CAN'T SAVE PUSH
<SPACEBAR> TO CONTINUE

I tried to save the program again—and again, and
again. It took three tries to convince myself that the
system wasn't just kidding me. I am reasonably
logical and levelheaded. But, because I didn’t have
any immediate solutions to the problem—didn't, in
fact, have a glimmer of an idea why I got that
error—I procrastinated and kept trying the same
“solution” until I convinced myself I would have to
find another way.

In this instance the political approach cost me
some time, but it also convinced me that I would
have to find a solution. Some people would be con-
vinced on the first try, some on the third; some will
never be convinced no matter how many times they

try. This last type of person has the most problems
in debugging.

Stick to the scientific approach. Problems with
the computer and your program are most often
amenable to reason. Consider the problem a puzzle
to be solved, not a situation in which the computer
can be convinced to behave by repetition, shouting,
or force.

Conversely, if you don’t immediately try the
scientific rational approach, don’'t be too hard on
yourself. Tell yourself (as I have and do) that you
are dumb, but don't take it too seriously. Some-
times it is necessary to make mistakes to find the
right answer. The reasons may be psychological;
we may need to convince ourself that there truly is
something wrong. The reasons may be accidental;
we may need to try several approaches before we
stumble onto one that works. Mistakes are part of
the debugging process. Be tolerant of errors and
don’t be overwhelmed by them.

BELIEVE IN A SOLUTION

Once you're convinced you have a problem,
you have to convince yourself that a solution exists.
Believing in a solution has two parts; one, that
there is a solution after all, and two, that it’s not
some trick that someone’s played on you.

A Solution Does Exist

It is difficult to believe that a solution does
exist when it’s 2 A.M. and you've been searching for
it since 8 the previous morming. To remind yourself
that a solution exists, remember the most extreme
possibility; you can rewrite the whole offending
routine. I don’t recommend rewriting the whole
routine (studies show that it's a good way to intro-
duce more errors than you started with) but it is an
alternative.

It’s especially hard to believe that a solution
exists when you think it might be a system error—
something wrong with the computer or a limitation
imposed by the computer. Beware of laying the
blame elsewhere so you can avoid responsibility.
When you're confronted with what seems to be a
system error, try and prove that it is.

Take as an example one of the times I sus-

