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PREFACE

This volume contains the papers presented to the Third IFAC/IFIP Symposium in the
series "Software for Computer Control" (Madrid, 5-8 October, 1982), which follows the symposia
held in Tallin (U.S.S.R.) in 1976 and in Prague (Czechoslovakia) in 1979.

The aim of this Symposium is to present, discuss and summarize the present state of
software developments for digital computer applications in science and control. Special
emphasis has been given to application of software developments, where relevant.

A total of 73 papers were given in 24 technical sessions, covering the following
topics:

- Real-time languages and operating systems

- Man-machine communication software

- ©Software for robots

- Software for distributed control systems

- C.A.D. of digital computer control systems
~ Adaptive computer control systems

- Algorithms for digital computer control

- Control software engineering and management
- Industrial applications

In addition to these papers, four plenary papers presented by invited speakers, cover
the theory, methods and applications of digital computer programming for control applications.

We would like to thank the members of the International Program Committee for their
effort in the selection of papers and the members of the National Organizing Committee for
their support in the organization. '

We hope that the publication of these papers, which come from specialists of 26
different countries, will make a good contribution to the development of this important field.

G. Ferrate
1982
October 19 E.A. Puente

Editors
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PLENARY SESSION

SPECIFICS OF REAL-TIME SOFTWARE DESIGN
FOR MULTIPROCESSOR COMPUTER SYSTEMS

E. A. Trakhtengerts

Institute of Control Sciences, Moscow, USSR

sbatract. The paper discusses the realization of progrems on
multiprocessor computer systems. The major attention is paid
to the design of systems for automatic program parelleliza-
tion. Consideration is given to the problem of finding the
optimal program structure solved via unification of parallel
branches and to the method of program cycle parallelization.
Specifics of operation system design for multiprocessor com=-
puters of different structure are discussed.

Keywords. Liultiprocessing system; computer software; data
processing; optimal systems; parallel processing.

INTRCODUCTION

Application of multiprocessor real-
time control systems gave birth to e
number of new problems whose solution
requires

- desaign of parallel algorithms;

- perallelization of the computing
process in systems with multiple
flow of instructions for parallel
sections of programs;

- development of new languege tools
for effective parallel program exe=-
cution and debug tools for reel-
time programs;

- design of translators for an auto-
matic parallelization of user prog-
rams to obtain effective progran
realizing real-time algorithms;

- design of an operation system pro-
viding the control of the parallel
computing process and its own pa-
rallel functioning.

PARALLEL ALGORITHLS

Algorithm parallelization for multi-
procesgor systems is a relatively
new field of mathematics. .
Seversl principally different algo-
rithm parallelization techniques for
multiprocessor computer system exist.

1. Widely used is the modification of

sequential algorithms and their trans-
formation into parallel. Such modifi-
cations may be easily obtained, for
instance, by the supstitution of se-
quential processing of individual com-
ponerits of a vector in problems of
linear algebra with parallel (vector)
processing of all or some of the vec~
tor components. A system with a mul-—

tiple flow of instruction permits
several iterations to be computed

in parallel. For example, solving

a system of partial differential
equations on one processor one may
begin computing veariable values for
the first iteration, then using the
first obtained values give a start-
up to the second processor and turn
to computing the second iteration,
and SO on.

2. Another way to design parallel
algorithms is to isolate a family of
parameter-dependent algorithms, the
parameter being the degree of compu-
tational parallelization. In many
cases such a family may be isolated
proceeding with & single known algo-
rithm which corresgonds to the deg~
ree of parallelization equal to one,
A family of algorithms for the .
search of the extremum of a unimodal
function may serve as an example.
The number of steps required to sol-
ve the problem is non-~linear depen-
dent on the volume of informetion,,
processed at each step.

Let §(*) is a unimodal function de-
fined at the interval (O,L) .
It 1s required to find its unity-
long subinterval (O,Lla) which
contains the point of the extremum
of function f(x).

It is well known (R.Bellmean, 1965)
that consecutive computation of the
function values in points X;, X, ,
ves 3Xn ylelds the solution of
this problem if L,€ F, where F, is
the Fibonacel number.

Estimate the efficiency of the above
parallel computational process with
a consecutive one (Bronstein, 1978).



2

Por a section of length l.,, : Fo4 ln
< F, N consecutive steps will
be required while the number of steps

in the parallel process will be ap-

proximately n /.(/(g (m+2)72)
for nm , and

n élf /lo(mefsbm e d)H)for en uneven

m , wheTe 71 is the number of pro-

cessors. Fig.1 presents the maximal

number of iterations versus the length
of the section for ~m =< and m«/S5 .

ms /S

J___l

2355 /3 21 34 5589 M4 233 377 610 L
Fig.

1 Number of iterations vs.
length of section.

3, Instead of a family of uniform
parameter-dependent algorithms one
may construct a set of diverse al-
gorithms end find within this set
the most effective algorithm in
terms of performence speed, minimal
memory or frequency of exchanges
with external devices. For example,
algorithm of recursion computation
or reverse of matrices.
4, Finally, special parallel algo-
rithme have appeared lately oriented
towerd a specific type of & multi-
processor computer system. Such are,
for instence, algorithms in ( Maru-
yama, 1973) and %Hyalir,1977).
It should be noted that the same al-
gorithms may feature different effi-
ciency under different strategies of
perallel computations. ’
Let us perform the following experi-
ment (Groppen, 1982). Our task is to
solve an extremal combinatorial pro-
blem of the form

C, X; — max

R

Zaajx;!'(j ) X € {o:'} QP

Let the entire set of solutions for
problem (1) be divided into V sub-
sets egch surveyed by its own
"pranch" realizing any of the tech-
niques which guarentee the global
optimal solution (direct exhaustive
search, Balasch's algorithm, branch-
and=boundary methods?. In the course

E. A. Trakhtengerts

of this survey the branches exchange
information on the record and pro=-
cessor elements. The prpblem is sol-
ved when the last branch terminates
operation. Formally, the problem of
minimizing the search time for the |
solution of the extremael combinati-
onal problem is minimax (Gropper,
1982):

mai ‘£z - i

1244V -

4, Vv
2 2 [Q0m, ) qlmy)]- Q
‘t"‘ Ju
v
%m"j ‘m) t't() t“.j),..) tz
¢ 30 J"zll 4
waere m’{s the total number of the

- MCS processor elements; My, is the

number of the processor eléments
isolated by the 4 Dbranch in the
instant of time; is the num-
ber c¢f branckes (control devices);
Q is the number of surveyed solu-
tions of the problem; &; is the num-
ber of solutions surveyed by the
branch; Qj(My,j) is the number of
solutions surveyed at the time ¢ by
the processor elements belonging to
the branch; Q;(My,q) is the num-
ber of solutions of the 4 Dbranch
cut off at the time ¢ by the ?
branch which feature the "best' re-
cord at this instant of %ime; £ is
the current solution itine; & Jj1s the
time of starting the J brafich;
éz,j is the time of terminating the
) branch; t‘ amint,. :
£“ max 'tl : .J Ld
To solve thbk prb'lblem (1) use Ba-
lasch's technique (Korbut, 1969),.
Compare three approachess a tradi-
tional one which realizes the Ba-
lasch algorithm on a single-proces-
sor computer, and two parallel me-

. thods, which require & multi-proces-

sor computer system, the first al-
loting all processor elements to
on: brench and providing the move-
ment along the branching tree by
rushes of h= &g,P on each iteration,
where - is the number of processor
elements in the system, and the se-
cond alloting mAWV processor ele-
ments to each branch where V is the.
number of control devices, The num-
ber of variables varied within the

renge 4€ngi? and the
number of constraints €L R ’
m=K,Va¥ .

Fige.2 shows typical dependencies of
the gain in the computation time
on the number of constraintsf undeér
the fixed number of varisbles n

n=13 , 2<€4n ).
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154 '&

134 ’L‘/ \

74

54 o A

4 ~

2 S S N N WA WA SN N T S 1 ':
8 2 4 6 & 2 .
nei3, mf§

Fig.?2 Computation time vs.
number of constraints.

The full broken line on the picture
corresponds to the "trustful" paral-
lelization strategy, when all the
processor elements are alloted to
one branch heving the best record.
The dotted broken line corresponds
to a "distrustful" search to which
the following is true: Vt,) ,

Mmyism/v (m, j is the
numbed of processor elements alloted
to the brench at the time 2 ).
The "trustful" search is obviously
more effective under a small number
of constraints. The increase of this
number . mekes asynchronous search by
several branches with identical num-
ber of processor elements more effec-
tive. This result, in particular
speaks in favour of applying mul%i-
processor computer systems with se-
veral control devices each having
its own vector processor element for
the solution of such combinatorisl
problems featured by a large number
of constraints.

" 1

PO P Sy

PN S G §

- . —tg
€ 4 w0 @ 4 6 n

e.‘ 2 M“‘
Fige.3 Computation time vs,
number of variables.

The gein in computation time § ver-
sus the number of variables of prob-
lem (1) is presented in Pig.3 where
the full and the dotted lines corres-
pond to the same algorithms as in
FPige2, It is easy to see that the
increase of the number of variables
for problems of the dimensions stu-
died has & less effect on the stra-
tegy of multiprocessor systems usage
than the increase of the number of
constraints,

Thus this example alreedy shows that
the use of multiprocessor computer
gystems for the solution of extre-
mal combinatorial problems proves
effective only if the structure of
the computer system is adequate to
the algorithm-problem combinetion.
For real-time systems the design of
algorithms which may be effectively
realized on specific computer sys-
tems is particularly important,

PARALLELIZATION OF THE
COMPUTING PROCESS INTO
SILULTANEQUSLY LXECUTED
SECTIONS OF FROGRAMS
Simulteneous solution of a problem
on several computer devices results
in a significent speed-up of the
computational process, It is well
known however that with the use of
P processors the speed of compu~-
tation is higher by the factor much
less then + This is so, in parti-
cular, due to time losses resulting
from the initiation of parallel pro-
gram sections execution (herein af-
ter referred to as branches) and
their synchronization i.,e. making
one branch wait the execution of
some other branches to terminate,
Therefore the use of branches with
short execution timesis often im-
practical, It should also be said
that the availability of branches
the number of which exceeds thet of
the processors does not speed up
program execution., This is certaine
ly true if branches contain only
processor instructions. Thus appears
e problem of generating such bran-
ches whose application minimizes the
execution time of the progream,
Let there are I different sections
(primary brenches) which comprise a
graph of the program with the known
execution time for each branch
4; (i=42. 7). The trensformation
of the graph is in unification of
some of its branches. It is implied
that all the branches executed priox
to these unified brenches should be
terminated by the time the execution
of the unified branches starts, The
same order should be maintained for
branches executed after the unified
ones, Unification of two branches
into one reduces the total opera-
tion time by s the time needed
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to realize the branch generation and
unification instructions. Such bran-~

ches of the program should be genera- -

ted that would minimize its time of
realization on & finite number of
processors, .

Assume the last I branch consistse
only of one program termination in-
struction end cannot be unified with
other branches of the program.

Then the problem is to minimize the
start time of I brench operstion
(Kut'in, 1981):

1:‘! - Mmin (2)
Introduce the following designationss

4 1f the i, branch follows
¢, .2{ efter Iy’
4 ¢y [0 otherwise

Let us make all possible unions of
branches. Assume their number is J .
To characterize the versions of
branch unification introduce the va-
lues

{1f the l:_branch is & member
a.:z of the union
Y |0 otherwise

To trace the avallebility of proces~-
sors introduce the function

5@ g if 6,446,

e 4, therwise

It is required to find such unions
of branches and start times of
their operatfon X (j=42,...,J) which
minimize (2). It {s also necessary
that the following is true:

> ayy 4, 4.1 (3
i.e. ®ll the prima&ry branches are re-

alized. Besides the order of the bran-~

ches should be maintained set by the
matrix with elements ci‘ i H

Another constraint to be satisfied
is the resourse limitation:

£ 5, (2, 2, +4,40)¢Q veelF(s)

where! T is & sufficiently large num~

ber greater thean Iz .
It follows from the problem state-

ment that
VZ_.OVI/ x; >0 (6)
The problem (2)-(6) is a non-linear
integer problem of mathematical pro-
gramming. The constraint (5) may be
presented explicitly using the vari-
ables zj - .
4 if the Jj union is active at
- the time instant ¢
4t ([ 0-otherwise

E. A. Trakt;tengerts

The problem (2)-(6) may then be re-
written as the problem of maximiza-

tion
2. Ry, = max @)
under constraints
Z ayfi=4 (8)
CixcPie Zpy Yed ggfa'xszuft 30 (9)
s gjt‘Q ! (10}

R eove; Y0V (11)
In cong;ast to (2)~(6), the problem
(7)=-(11) is featured by a greater
number of variables but it does not
contain any implicit functions. It
should be noted that the number of
unknowns and constraints in a speci-
fic problem may be essentially re~
duced’'if only the neighbouring bran-
ches are united i.e. those outcoming
from one point or incoming into one
point. To obtain the. optimal solu-
tion an iterative procedure should
be designed using the found value
as the initial approximation in the
subsequent run of problem (7)-(11).
The solution of this problem deter-
mines the unification of branches
to be used and the start times of
their execution. Unfortunately the
solution of this problem is greatly
hindered by the non-linearity of
constraints (9). Only for program
structures simple enough whose frag-
ment is shown in Fig.4 the problem
may be solvable.

3

FPig.4 Structure of a program
fragment

Let there are M4 branches on route
1-2, N, branches on route 2-3 and
ny branches on route 1-3. Let us
make all possible unificaetions of
branches on the sections whoge num-
ber I,on route 1-3 is equal £c¢, ’
on route 1-2 = ¢, and on route 2-3
S°Ca, + The number of unions of
routeﬁ on route 1-2-3 is then

L ZCariCa, . The execution
time of the union on the section
1=-3i8 T =Za,t.+ Ti, i=42,.., 2y «
Since we consider unions of the
brancheg on section 1-2-3

e Zaute + T aut T ield Lo
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The problem is to find X; such that

max X,T, —>min '
Introduce a variable w »max 7,
Then the goal function (2) takes up
the form

W= min (12}
under condition that -
T, & W (13

Besides, the following constraints
shou%suEe satisfied:

%-— Qi X; =4 (14)
‘21-14 Q (15)
x; rove (16)

In other words, one should find Q
unions of branches of an approxima-
tely equal length which comprise all
initial breanches.

For programs with an arbitrary ini-
tial structure an algorithm for the
determination of generaslized bran=
ches is suggested in (Kutin, 1981)
which employs an iterative technique
to design the structure of the prog-
ram with a good approximation to mi=-
nimal execution time.

The work of this algorithm may be
exemplified with the transformation
of the program whose initial struc-
ture was shown in Fig.5.

L

T=83 ‘
Fig.5. Initial structure of the
program,

The structure was designed with the
resourse €2 and T*5 . The program
execution time was 83. After the
transformation of its structure in
accord with the suggested algorithm

it wes reduced down to 64. The struc~

ture obtained is presented in Fig.6.

Fig.6. Transformed structure of
the program,

Thus the use of the algorithm of the
rational unification of branches re=-
duces the execution time by 22 per-
cent. It should be noted that the
more the relative execution time for
braench generation and unification
instructions, the higher the need

to unify the branches.

PARALLEL PROGRAMS: NEW
LANGUAGE AND DEBUG TOOLS

Language tools in multiprocessor
systems are intended for the orgeni-
zation of serial-parallel computa-
tions.

They differ from "traditional" prog-

ramming S anguages in that they con-

tain additional constructs to provi-
de parallel realization of program
fragments and their timing.

These tools include

- vector and matrix operations and
means for masking the operations
over vector elements;

- tools for the creation of sections
of parallel execution herein after
referred to as Ybranches";

- tools for timing the branches.

The expressions over arrays. (vector,
metrices) usually meke use of the
same operations as scalar expres-
sions., Normally, specificetion of
subarrays of various types and ope-
rations over them is allowed. The
conditional logical operator over
arrays permits operations only over
such array elements to which the va-
lue "TRUE" in its logical expres-
sion corresponds. In this way opera-
tions over vectors are mesked which
is normally hardware reelized.

To organize operations with parallel
branches special statements are in-
troduced for the description and
initiation of branches. In any poi.t
of the program one or several bran-
ches may be initiated which may be
executed in parallel. Usually both
static and dynamic determination of
parallel brahches is provided. In
the latter case the number of bran-
ches announced in a given point is
determined. in the course of program
execution.

The body of a branch is created sta-
tically i.e. in the course of the
traenslation and, normelly, does not
lend itself to be shaped dynemically.
Special statements designate the be-
gining and the end of a branch.

The timing of the computational pro-
cess requires introduction of vari-
ables or arreys of the "event" type
as well as wait and event termina-~ -
tion statements, The operands for
these are variasbles or arrays of the
"event" type. To provide operation
of several branches with the same
date statements of the "semaphox"
type are introduced.



6 E. A. Trakhtengerts

The level of synchronizing primitives
is raised with the help of mechanisms
of conditional critical intervals
(Hoare, 1972), monitors (Hoare, 1974;
Hensen, 1973; Hansen, 1975), senti-
nels (Keller, 1978), control expres-
sions Campbell, 1974) and rendezvous
(in the Ada language).

The major feature of parallel prog-
rams which hinder their debug as com-
pared to serial programs is asynchro-
nous execution of sections of & paral-
lel progrem.This feature makes it dif-
ficult to reproduce the situation
whicli leads to an error. Because pa-
rallel, processes are asynchronous

they mioy access to the same deta in
different succession. The order of
processing may effect the result whi-
le the programmner has no means to res-
tore the order of date processing to
localize the error., ithis feature of
asynchronous programs is perticularly
hermful in complex debug of large
programs,

LBANS OF IRANSLATION
PROVIDING AUTCL.ATIC
PARALLELIZATION CF
USER FROGRALS
The analysis and parallelizeation of
programs in the course of its trans-
letion mey be performed eccording to
the scheme shown in Fig.7.

input text

isoletion of linear sections
cycles.

end harmocks

seguences

parallelization . ||lperallelization
of linear section f simple cycles

. —

generetion
of object code

Fig.7. Parallelization process
diagram

The process of syntex anslysis mey
also be made parsllel (Trakhtengerts,
1981). The analysis helps one to iso-
late linear sections, simple cycles
and hemmocks. An slgorithm for the
isolation of linear section may easi-
ly be designed proceeding from its
definition.

Let us call a simple cycle the prog-
ream fragment which consists of one or
several statements of a cycle or cycle
body not containing the transfer of

control beyond this cycle. The boun-
daries of cycles are found by formal
indicators of cycle description in
appropriate programming languages.

A subgreph with a single input and
single output will be referred to as
a hammock.

The process of the progrem graph ana=-
lysis terminates with the isolation
of linear sections, simple cycles

and hammocks. After that takes place
parallelization inside linear secti-
ons, parallelization of simple cycles
and design of ordered linear sequen-
ces., An ordered linear sequence con-
gists of simple cycles, hammocks and
linear sections.

Paraellelization inside linear secti-
ons, design of ordered linear sequen-
ces and parallelization of simple
cycles may be performed simultaneous-
lye.

Parellelization of linear sections.
Inside a section parellelization is
performed by statements, while inside
e statement arithmetic expressions
may be executed in parallel., The

“Trensformation of scalar arithmetic

expressions for parellel computation
is" in the reduction of the number of
steps required to compute the arith-
metic expression. For instance, the
computation of the expression
a+8nC+ requires two steps,
At the first step, €#C and a-+
are computed. At the second step the
results of the first step are summed

UPe
Such parallelization of arithmetic
expressions and parallel execution
of linear section statements unrela-
ted informationally is possible only
when a computer system realizes pipe-
line processing and/or is provided
with special ALU's for addition, mul-
tiplication, shift and/or several
multi-purpose stendard processor ele-
ments., In this way a substantial
speed-up of the computational process
is achieved (Trekhtengerts, 1981),
Generation snd local parellelization
of ordered linear sequences. Intro-
duce the concept of an essential arc
end an essential statement. Let a
control graph of the program & is
given. Each vertex of the graph cor-
responds to a linear section, simple
cycle or hammock. Vertex o; and arc
(«;) will be referred to as essen-
tial for vertex o; if any other path
in graph G from veértex «; along arc
(«£;) toward the output vertex ol
passes through vertex & , and if a
path exists in graph G from vertex
&; along arc (£;) to the output ver-

- tex olx escaping vertex oy . Procee~

ding from this definition one may
easlly design an aslgorithm for find-
ing essential arcs and vertices.

As soon as a set of essential arcs
is found this means that the set of
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ordered linear sequences is available
since each arc defines a certain or-
dered linear sequence, The ordered
linear sequences are generated in
the following menner. Assume (2;) ,
an arc outcoming from vertex n; ,
is essential for the set of verti-
ces {np} . Then a direct follower
of vertex m; from the set {n,}taken
along erc (m;) is the first element
of the ordered linear sequence gene-
rated With the help of the arc (n;) .
A sequence of look-through is estab-
lished for the elements of the set
{np} which corresponds to the or-
dér of their appearance in graph G .
W¥ithin each ordered linear sequence
informetion and logical links between
its components are analyzed in & man-
ner similer to the anelysis of linear
sections. As a result of parslleliza-
tion of elements for every ordered
linear sequence, its elements are
displaced with respect to one another
within this ordered linear sequence,
i.es.they are distributed by local le-
vels.
Cycle parallelization in the course
of translation.
Vector computetions prove highly ef-
ficient for computer systems equip--
ped with vector registers or sets of
processor elements. Operations over
the elenents of vectors in vector
operations on such systems are per-
formed en order cf magnitude faster
than the same operations over sca-
lars. Therefore the trensformation
of cycle bodies of serial programms
into vector operations significantly
reduces progrem execution time,
The aim of transformation of a seri-
al program cycle body into the vec-
tor operation is to perform a vector
operation (parallel computation) over
those elements of the vector the co-
ordinates of all points of which are
porellel to some plane. For instance,
such plane for which the condition
Ta;I,>const holds., The value
of the constent should change after
each cycle body run until all points
of the cycle are passed,
A8 a rule far not every cycle lends
itself to parallelization; this may
be done only with those which satis-
fy a number of limitations. Normally
the following limitations are lmpo-
sed upon & cycle body: it should not
contain 1/0 statements, transfer-of-
control stetements and references to
subprogremms and functions whose pa-
remeters are generated veriables.
Certain limitations on the form and
order of Index expressions should
also be satisfied.
The structure of the computer system
dictates the use of a particular pa-
* rallelization technique, Thus, for
the ILLIAK-IY type of systems the
method of coordinates (Lamport,

1974) may be employed; for systems
with sets of asynchronously opera-
ting ?rocessors, the hyperplane me-
thod (Lemport, 1974), the method of
perallelipipeds (Val'kovski, 1979),
etc.

These methods differ not only in the
way parallelization is carried out,
but also in the debth of limitation
imposed upon the cycles to be trans-
formed.

Parallel execution of the cycle bo-
dy requires determination of the en-~
tire range of values for every index
variable within which the vector
operation may be performed. In doing
so, one should make sure that the
execution of the vector operation
iseouivalent to the initial cycle.
Normally this requires the solution
of a rether complicated system of
integer equations and inequalities
(Lebedev, 1979). Therefore parame-
ters of the cycles to be transformed
should be specified in the form of
constants rether then variables,The
entire preparatory work preceding
parallelization may then be carried
out in the course of the translation
rether than' execution of the prog-
Y&alile

It should be noted that according

to the analysis of cycles in Fort-
ran programs, 30 to 60 percent of
cycles used in programs lend them-
selves to automatic parallelization,
depending on the computer system
structure and, consequently, on the

D%;allelization teq%fioue employed.
\\
1
Swugk I3
e
-

: J
Pige8. Cycle parallelization
dliagram.

Figure 8 shows transformation of a
simple sequential Fortren cycle

20 1 T=LNV

204 Ys (M

1 A D<A(3T)

into a parallel cycle :
' K3 {N
j’: c’oﬂc tFoR ALL(I,J))IIJ{M3I=)

1 A@))=4(]1)

with the transformation metrix ¢e(hd
The lefthand part of Fi 3.8 presents.
the traditional sequential execution
of the cycle. The righthend part
shows the parallel way of execution.
At first the cycle body is executed .
for TI=A y 4£J€M=5 , then
for I=2 , 44y4¢mM=5 end so on.



