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Preface

This book is an attempt to merge the best of two worlds. It brings precise
mathematical language and terminology into an arena of modern engineering

reliability probems. These include such topics as simple analysis of circuits, design

of redundancy into ‘systems, reliability of communication networks, mean time to
failure, time-dependent system reliability, and uses of probability \in recursive
solutions to real-world problems.

All books reflect the point of view of the author. Texts on probability written
by engineers usually move as quickly as possible to the applications of most interest
to the writer. The mathematical foundations are presented casually and quickly, if at
all, and understanding is gleaned from examples rather than from definitions and
theorems. Mathematicians, on the other hand, tend to write probability books that
‘dwell on topics such as combinatorics, labeling problems, allocation schemes; and
limit theorems. Such books present little that seems relevant to the world of an
undergraduate engineering student.

In teaching probability to engineering students for more than a decade, I have
seen the difficulties caused by both of these kinds of textbooks. Students with
good intuition are often handicapped from never having come to grips with the basic
conccpts.' On the other hand, the importance of fundamental concepts escapes the
student unless some application is in sight. For this reason, significant applications
appear early in this text. Chapter 2, for example, illustrates how the idea of
conditional probability can be blended with algorithmic problem solving to develop
tools for reliability analysis of complex systems such as circuits, communication
networks, and chemical reactors. These contemporary problems mix probability
and discrete mathematics, and they require a solid understanding of the basics. But
the student is rewarded with a sense of relevance that isn’t matched by drawing
balls out of an urn. -

The essentials of an introduction to probability are found in Chapters 1, 3, 4,
the first three sections of Chapter 5, and the first four sections of Chapter 6. The
remaining sections of Chapter 6 introduce conditional density functions, conditional
expectation, and the central limit theorem. (The De Moivre-Laplace version of the
central limit theorem appears iri Chapter 5.) Chapter 7 gives a brief introduction to
stochastic processes, with heavy emphasis on the Poisson process, Chapt‘cr 2
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X . ’ Preface

applies the basic ideas of probability to reliability problerﬁs involving a variety of
complex systems. Chapter 8 shows how to extend the concept of reliability to
systems having components whose reliabilities vary with time.

Proper mathematical language and detail are important in formulating correct
mathematical models, and this book reflects that fact. However, the book is
practical rather than theoretical, and logical explanations or proofs are given only
where they are an aid to intuitive understariding.

The real world confronts us with some easy problems and some hard ones.
So does this book. As a result, it does not seem appropriate to treat all problems the
same with regard to hints given or answers provided. This has prompted the
inclusion of the section of answers, partial solutions, and hints to selected problems
that appears as Appendix A. My hope is that students will give serious thought to
problems before consulting this appendix, and that after consulting it they will
think seriously about alternative solutions suggested or fill in missing details.

My own research in recent years has shifted into the area of reliability
analysis and risk assessment. And, just as with other books, this one reflects the
author’s own interests. The common theme in this book is the search for reliability
in an increasingly complex world. News reports on topics as diverse as arms
control, strategic defense initiatives, hazardous waste dumps, and nuclear reactors
all remind us of the fact that uncertainty (or lack of reliability) is central to many of
the pressing issues of our day. ‘

Lavon B. Page
September 1988
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Chapter 1: The Basics

In January 1986 the space shuttle Challenger exploded in midair. The space
shuttle had previously been considered so safe by NASA that plans were afoot to
send plutonium powered modules into orbit. ‘The previous year an accident at the
Union Carbide plant in Bhopal, India, had killed thousands of people in what was
at the time the worst industrial accident in history. A few months later, the Soviet
reactor at Chernobyl was to run amok and burn out of control for days, while
spewing radioactivity into the atmosphere. The Soviets had thought the probability
of such a major accident to be extremely low.

As long as such accidents continue, and there is every indication that they
will, there will be a lot of interest in trying to determine the reliability of things like
space vehicles, nuclear and chemical reactors, and such ordinary devices as
automobiles, garage door openers, or heating systems. Skepticism now greets
claims that something or other is “less likely to happen to you than being hit by
lightning,” or has “only 1 chance in 10,000 of occurring in the next 50 years.”
Often such claims have been based more on hope than on science.

Estimates of the reliability of equipment or complex systems depend heavily
on the field of mathematics known as probability. Probability can be abused, just
as can most tools. The best mathematical model can’t produce true answers if
incorrect or naive assumptions are fed into it. Even at a fairly elementary level,
however, probability opens the door to the investigation of complex systems and
situations. If we want to answer such questions as “What were the chances of that
happening?” or “How much do we expect to gain if we make that decision?”, the
answer will have to be expressed in the language of probability. The purpose of
this book is to present the basics of that language and to show its application to a
variety of meaningful examples, with an emphasis on the idea of reliability.

Interest in probability blossomed around the gambling tables of Europe
hundreds of years ago, though much earlier references can be found in Hebrew and
Chinese. Many games can be analyzed by looking at the possible outcomes of an
experiment, such as rolling a pair of dice or dealing some cards from a deck.
Frequently something about the situation suggests that the various possible
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outcomes should be considered equally likely. For example, the symmetric shape
of a six-sided die suggests that the six outcomes are equally probable, and the
purpose in shuffling a deck of cards before dealing is to try to approximate a
situation in which one arrangement of the deck is just as likely as another. J

The concept of equally likcly outcomes leads to a natural concept of
probability. For example, since there are 13 hearts in a deck of cards, there are 13
chances out of 52 that an arbitrary card drawn from a deck will be a heart.
Considering the ratio of these two numbers gives the intuitively satisfying
conclusion that the probability of drawing a heart when a card is drawn from a deck
should be 13/52, or 1/4. '

A more skeptical person might argue that the only way to test probabilities is
to experiment. For example, gi\}en a coin of unknown characteristics, the only way
to determine the probability of the coin coming up heads is to toss it many times and
see what happens. A mathematician might look at the situation in this way: If H,
is the number of heads obtained in the first » tosses of a sequence of tosses, the

probability of heads might be taken as
H

Iim —=

n-yes N
Of course there’s no way actually to toss a real coin ar infinite number of times to
evaluate the limit, but the intuitive idea is that such a limit ought to exist and should
define whatever it is we mean by the probability of the coin coming up heads.

A third way that probabilities are tossed about in everyday couversation
involves subjective considerations. Someone might say, for example, “Notre Dame
is a 210 1 favorite to beat Michigan.” This statement has a elear meaning as far as
probabilities go. The speaker is saying that Notre Dame’s chances of winning are 2
chances out of 3, which means a probability of 2/3. Such a statement is the
speaker’s quantitative pronvuncement of his or her or somebody’s opinion on the
matter. Another such illusiranion is a weather forecaster announcing a 30% chance
of rain. Presamably - uch a statement would be based on existing weather data and
would not be grely subjective. It may be, however, that some kind of subjective
guesswork went into building the weather model from which the 30% figure is
obtained. : iE
A mathematicaily useful treatment of probability must Iay a:cofnxnon
groundwork so that everyone is speaking the same language. Much of this
groundwork consists of the elementary language of sets and set (}perarions.
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1.1 Sets and Set Operations

Intuitively, a set is simply a collection of objects. This is one of the most
primitive of mathematical concepts, and thus we cannot define sets in terms of yet
more elementary concepts. The common practice is to denote sets by capital letters.

Equality of two sets means that the sets consist of exactly the same elements.
For exainple, A = {1, 2, 3} and B = {2, 3, !} are equal. (Therc is no order
associated with the elements of a set. A set is simply an unordered collection of
objects.) If every element of set A is also an clement of set B, then A is a subsetr
of B and we write A € B. Set membership is denoted by the symbol €. For
example, 1 € A but 4 e A in this example. .

Perhaps the most useful method of defining sets is by describing the rule for
set mewsbership. For example,

S={x:xisaninteger and x >0}
is simply a way of describing S as the set of positive integers.

The three basic set operations are union, intersection, and compiementation.
Union and intersection are operations that arc performed on collections of sets,
whereas complamentation is performed con a single set.

The ynion of two sets A and B is denoted by A U B and defined by

AUB = {x:xedorxe B}
allows the possibility of membership in both,

()

1t is importaai io understand that “or
Thus the condition for membership in A W B is simply that the candidate be an
element of at least one of the two sets A and B.
In the definition of the intersection of two seis, “or” becomes “and.” Thus,
ANB = {x:xe Aandxe B}
Intersection thus represents the “overlap” of the two sets. [f thiz wlersection is

empty, then the sets are said to be disfeint or mutnally excinzive. Both the

ten of unton and interszciion extend 1 Ve any coll

ww eollection). The wifon of a collection of vors const

s feven

of 4l 2lements that

Delong woan fast one set of the collection, whereas b inrersecting o tha collectinn
consiats of thie elements that all the sets have in cormmaen.
Inany discussion about sets, the sets under comaiderition wi

1 be subsets

ground. (What the vatversal set is should

odefmed as the set of all elements in the universal set that do ror belong (6 AL

For example, in the context of a discnssion of the real number system. the
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complement of A = {x:x> 1} is
Af={x:x<1}
The difference of two sets, A — B, is defined as A M B®.

Some of the important elementary laws governing the set operations are as
follows:

Associative law for union AvuBuUC)=AuUBUC
Associative law for intersection ANBNC)=ANBINC
Commutative law for union AUB=BUA
Commutative law for intersection ANB=BnNA
Distributive laws ANnBuUC)=ANBU@ANCDC)
AUBNCO)=(AUBINAUVD)
De Morgan's laws (AU BY =A° B¢
(ANB)Y =A°UB*

A simple way to verify some elementary set identities is to use Venn
diagrams. The idea is to visualize a set as being represented by a region in the
plane. Figure 1.1 illustrates the use of this concept with regard to the first
distributive law above. The shaded area in the figure is the region corresponding to
the sets on either side of the equation in the first distributive law. One way to check
equality of sets is to construct a Venn diagram for each set and to observe that the
Venn diagrams coincide. '

Figure 1.1 Venn diagram mpremlhgme’m AN(BuO)={AnBu(An 0.
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Example 1.1. A group of 9 men and 7 women are administered a test for
high blood pressure. Among the men, 4 are found to have high blood pressure,
whereas 2 of the women have high blood pressure. Use a Venn diagram to

illustrate this data.
)
5

The circle labeled H represents the 6 people having high blood pressure, and
the circle labeled W represents the 7 women. The numbers placed in the various
regions indicate how many people there are in the category corresponding to the
region. For example, there are 4 people who have high blood pressure and who are
not women. Such people are in set H but not in set W; that is, they belong to the
set H N W*. The number 5 in the lower right corner indicates the number of men
without high blood pressure.

The decision to use circles to represent “high blood pressure” and “women”
was quite arbitrary. We could just as well use circles for “low blood pressure” and
“men.” (See Problem 1.25))

Solution:

Example 1.2. If A, B, and C are sets, draw a Venn diagram and shade the
region corresponding to the set (A U BY) N C.

Solution: The best way o arrive at the following figure is in a step-by-step
manner. First, decide what region corresponds to the set A w B¢, This will
include all the space inside the A circle and all the space outside the B circle.
Then, the final step is to observe what part of this region lies inside of C (since
the final operation is intersection). If you like you can think of spray painting
everything inside the A circle, then spray painting everything outside the B circle,
and then looking to see what part of the inside of circle C is painted. The region

that represents the set (A U B) N C is shown in the figure.
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QAN

"

Exampie 1.3. If A, B, and C are the following sets of characters, then
determine the set (A \w B€) N C. Here we will consider the universal set to be
all 26 letters of the alphabet.

A=la, h,t}
B=1{d, g, b1t}
C={d, a,g}

Solution: While it is possible to represent this information in a Venn
diagram, it certainly isn’t necessary. Simply observe that B¢ consists of all letters
except d, g, b, and ¢t. Therefore, A U B® consists of all letters except d, g,
and b. So the only letter that A U B¢ has in common with C is a. Conclusion:
(A w B N = {a}. Notice that Problem 1.27 asks you to observe this in the
context of a Venn diagram.

1.2 The Sample Space

The sumple space is roughly “the set of all possible observations or
outcomes” of whatever is under discussion. This idea is best illustrated through
examples. oo

Example 1.4, 1f a coinis tossed, the sample space could be taken to be the
set § = {H, T1. If an ordinary six-sided die is rolled, the sample space could be
taken to bz the set §= {1, 2,3, 4,5, 6}
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Example 1.5. A card is drawn from a standard deck of 52. Here one could

take the sample space S to be
S=1{24.24.2%,24,3%,3¢,.. ., Ko, As Ae, Av An}

A simpler conventicn would be to agree to think of the cards as being identified
with the numbers 1,2, - - -, 52 and to simply think of S as consisting of these 52
numbers. It is important to realize that the particular bookkeeping scheme used is
not very important compared to the conceptual understanding of what kind of set is
an appropriate model. Whatever notation is used here, the sample space is a set of
52 elements.

Example 1.6. Suppose a simple electric circuit has two components, say A
and B. Either component can be “good” or “bad” in the sense that the component
may or may not be in working order. If we are interested in all possible states of
the circuit, the sample space used could be S = {GG, GB, BG, BB}, where the
convention might be that “GB,” for example, means that component A is good and
component B is bad.

-

Example 1.7. A pair of dice is rolled. Let’s refer to them as “red” and
“green.” An appropriate choice for the sample space for this expcriment would be
the set S = {(1, ), (1, 2), (1, 3), - - -, (6, 5), (6, 6)}, where, for instance, we
might agree that (3, 5) represents the outcome of 3 on red and 5 on green. The set
S contains 36 elements since either die can come up 6 different ways and 6 x 6 is
36. (There’s a basic underlying principle here that some elementary texts call the
multiplication principle. When one task can be performed in m different ways and
another task can be performed in n different ways, thén the number of different
ways of performing the two operations together is mn.)

In playing many games, one is not interested in the individual numbers that
appear on the dice, but rather in the sum. In this case it might be tempting to take
the sample space to be S = {2, 3,4, ..., 11,12}. This is not necessarily wrong,
but it does sacrifice information. For example, if this sample space is used, one can
no longer answer questions such as “Did the red di¢ show an even number?” The
result on the red die is not even 'being recorded. Another reason for caution is that
the outcomes of this set of possible sums are not equally likely. For example, a
sum of 2 occurs only if both dice show the number 1, whereas a sum of 7 occurs in
six different ways. It is often necessary to consider sample spaces in which
individual outcomes don’t all have the same prohability. One needs, however, to
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be aware when this is the situation. A frequent naive mistake is to assume that
outcomes are equally likely when they are not. It is common to refer to a sample
space in which all the elements are considered equally probable as a uniform
sample space.

Example 1.8. When binary data is transmiitted, the output can be thought of
as a string of 0’s and 1’s. (In electrical transmission, a voltage above a certain level
could be defined as 1 and below a certain level as 0.) If 4 bits are transmitted, what
would be an appropriate sample space to represent the possibilities?

Solution: The logical choice would be to take the sample space to be all
ordered quadruples of binary digits. In other words, § = {0000, 0001, 0010,
0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110,
1111}. These 16 outcomes are simply the numbers from 0 to 15 written in binary
form. There are 16 elements of the sample space because 24 = 16. Eight bits
(commonly referred to as a byte) can represent 28 = 256 different possibilities.
This is equivalent to saying that if 8 bits are transmitted, then the sample space for
all possible outcomes has 256 elements.

1.3 Basic Properties of Probabilities

The word event is commonly used in everyday language, and often we speak
of a particular event “occurring.” In probability discussions, you should think of
an event as a subset of the sample space. For example, if we say when a die is
rolled that “an even number occurs,” we are saying that the observed outcome lies
in the set E = {2, 4, 6}. We are describing E verbally by saying E is the event
“that an even number occurs,” but this is simply an alternate way of saying that £
is the given set of outcomes. The reason for talking about events occurring is that
this language is so common and useful in everyday speech. In talking about
probability, to say that an event occurs is simply to say that the observed outcome is
one of the clements of the event. This mathematical language is COnsistentj\p'@ih
common speech. You should keep in mind, theugh, that in the language of
probability there is a precise mathematical meaning to such expressions.

There are three basic axioms that characterize what is meant by a probability
measure. The notation P(A) represents the probability that the event A4 occurs,
and the assumption is that probabilities always behave according to the these rules.

s -
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The Basic Axioms for a Probability Measure
1. Foreachevent A, P(A) 2 0.
2. P(S) = 1, where S denotes the sarople space.
3. If A and B are disjoint, then P(A U B) = P(4) + P(B).

The intuitive basis for all three axioms should be obvious. When we say that
something has probability 1/10, we mean that there is one chance in 10 that it will
occur. A negative probability has no conceivable meaning. Similarly, a probability
of 1 represents absolute certainty, and probabilities greater than I would be
meaningless. The last axiom is very important in that it ailows the probability of
events (in the case of a finite sample space) 1o be computed in terms of the
probabilities of the individual elements that make up the events. This will be
demonstrated shortly. (See Equation 1.1.)

Additional Properties of Probabilities
1. P(@; =0, where @ denotes the empty set.

2. PAYS PBYITACB, and P(A) £ 1 always.

3. PiA-B)y=PA)-P(ANB).

4. PIA L BY = P(A) + P(B) - P(A 1 B} always,

5. IfA; A,y - - - A, are disjoint events (10 two events havirg any

elements in common), then
PAAJUA U UAY = PAD+- -+ P(A,)

Property 115 an immediate consequence of Axiom 3. (Simply take 4 and B
both 1o be the empty set in Axiom 3, and you have P(@) = 2 P(@), which implies
PO = ()

If A < B then B =AU (B -A), and this is a disjoint uaion. Thus, from
Axiom 3 we know that P{B) = P(4) + P(B ~ A). The right side here.is
greater than or cqual to P(A) because P(B -- A) 2 0 (Axiom 1), and this proves
Property 2.

Property 3 is a result of the fact that A = (A N B) U (A ~ B), and the
union here is disjoint.
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Property 4 may be obtained by first noting that
. P(AUB)=P(A)+ P(B-A)
This is a special case of Axiom 3. From Property 3, however, we know that
P(B—-A)=P(B)~P(ANB) .
The truth of Property 5 is a consequence of mathematical induction. In fact, if
PAjUA,L-- VA = PA)+.--+PA)
then it follows that
PALVA, V- VA, ) = PAD+ -+ P4,

simply by letting A; WA, U---UA4, and A,,, play the roles of A and B in
Axiom 3.

For finite sample spaces it is always possible to compute the probability of an
event by focusing on the individual elements that make up the event. For if the
sample space is S = {s,, 55,- - -, 5,}, then, according to Propcrty 5, the
probability of any event A € § may be computed via

PA) = D, P((se)) (LD

5.€4

In other words, the probability of any (finite) event may be computed by simply
adding up the probabilities of the individual elements of the event.

Later in this book we will see that probabilifies of events often must be
approached from a different perspective when the sample space is infinite. The idea
of computing probabilities of all events via a sum, as in Equation 1.1, must be
abandoned. In Chapter 5 we will see that in “continuous” models, integration takes
the place of summation.

Continuous models arise, for instance, when measurements are being made
on some kind of continuous scale and one wishes to think of an interval of possible
values. For example, think of the experiment of “selecting a random number
between 0 and 1.” Clearly it would be intuitively satisfying to think that the
probability is 1/2 that the number should come from the subinterval [0, 1/2], or1/5
that the number chosen should be in the interval [3/5, 4/5]. In fact, we would like
to know that the probability of the number falling in any particular subinterval is -
simply the length of the subinterval. Simple as this situation sounds, the actual
demonstration that there is a probability measure on the interval (0, 1] that has these



