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PREFACE

This book is based on the lecture notes developed by the authors for courses
on the theory of dislocations at Carnegie Institute of Technology, The Ohio
State University, and Oslo University. The book is intended to be primarfly a_
comprehensivé text in the field of dislocations. . For this reason, an exhaustive

“literature survey has not been attempted, although throughout the book key
references are cited.

Within the past decade, studies of dislocations and their effects on material
properties have expanded greatly, resulting in the apparent need for a detailed
approach to the various problems in the field. We have attempted both to
provide sufficient detail that much of the book could effectively be used as an
undergraduate text and to extend the treatment of specific problems sufficiently
to stimulate the advanced graduate student. As a result, some sections of the
book are intended only for advanced students.

. The book is comprised of two general groupings. Parts- 1 and 2«essent1ally .
consider only fundamentals of dislocation theory. These fundamentals are
. solidly grounded and can be presented without problem. Parts 3 and 4 treat
both fundamentals and applications of the fundamentals to the understandmg
of physical phenomena. Those aspects of the théory which are discussed in -
detail are well founded. However, the treatment of some subjects, such-as -
work hardening, in the applications section is still moot. In such cases, we have
briefly outlined current theories, pointed out their shortcomings, and suggested

approaches to a general solution to the problem in. qu&stlon .
 Throughout the book, we assume a background in mathematics. through-
differential equations. More advanced mathematical topics are treated in the
text. However, in such cases, we have attempted to outline the derivations in
sufficient detail for the student to derive them either directly or with the aid of
a reference book such as I. S. Sokolnikoff and R. M. Redheffer, “Mathematics-
of Physics and Modern Engineering,”” McGraw-Hill, New York, 1966. Because
of the variety of topics treated, we have encountered a problem in notation.
Rather than use unfamiliar symbols, we have used the same symbol for different
~quantities in some cases. For example, F denotes both Helmholtz free energy
and force, and v denotes both velocity and volume. The context makes the
definitions clear.
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' INTRODUCTORY MATERIAL

I-I: Introductian

This chapter deals largely with the historical development
of the concept of a dislocation. Physical phenomena
which led to the discovery of dislocations are discussed,
together with early mathematical work which eventually
. contributed to dislocation theory. Today, of course,
- there is a large variety of observations which. indicate
dlrectly the presence of dislocations in crystals; selected
examples of these observations are presented. In the final
portion of the chapter dislocations are defined formally in
terms of their geometric properties. Som® simple axioms
follow directly from this deﬁmtlon

12, Phys:al basis for dislocations
Early work

Probably the first suggestion of dislocations was pro-
vided by observations!? in the nineteenth century that the
plastic deformation of metals proceeded by the formation
of shp bands or slip packets, wherein one portion of a -
- specimen sheared with respect to another. Initially the -
interprétation of this phenomenon was obscure, but with
“the discovery that metals were crystalline, it was appre-
ciated that such slip must represent the shearing of one

portion of a crystal with respect to-another upona rational -

crystal planc

10. Mugge NeuesJahrb Min., 13 (1883). .
2 A. Ewing and W. Rosenhain, Phil. Trans. Roy Sac., A193:
353 (1899).



4 Dislocations in isotropic continua

Volterra® and others, notably Love,? in treating the elastic behavior of homo-.
geneous, isotropic media, considered the elastic properties of a cut cylinder |
(Fig. 1-1a) deformed as shown (Figs. 1-15 to 1-1g). Some of the deformation
operations clearly correspond to slip, and some of the resulting configurations
correspond to dislocations. However, the relation of the work of the elasticlans
to crystalline slip remained unnoticed until the late 1230s, after dislocations had
been postulated as crystalline defects. Configurations (b) and (¢) in Fig. 1-1
correspond to edge dislocations, and (d) corresponds to a screw dislocation.
Configurations (e), (f), and (g) are not discussed further here, since they do not
correspond to crystalline imperfections; the essential reason for this is that the
displacements produced by these configurations are proportional to the outer
cylinder radius and hence do not vanish as the radius tends to infinity.

Following the discovery of x-rays and of x-ray diffraction, establishing crystal-
linity, Darwin® and Ewald* found that the intensity of x-ray beams reflected from
crystals was about 20 times greater than that expected for a beam reflected from
a perfect crystal. In a perfect crystal the intensity would be low because of the

(8)

Fig. 1-1. A cylinder (a) as originally cut, and (b) to (g),.as deformed to produce the
six types of dislocations as proposed by Volterra.

1V, Volterra, Ann. Ecole Norm. Super. 24, 400 (1907).

-2 A_E. H. Love, “The Mathematical Theory of Elasticity,” Cambridge Umversuy
Press, Cambridge, 1927.

3 C. G. Darwin, Phil. Mag., 27: 315, 675 (1914).

4 P. P. Ewald, Ann. Phys., 54: 519 (1917).
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" long absorption path provided by multiple internal ceflections. In addition,

" the width of the reflected beam was about 1.to 30 minutes of arc, whereas that
expected for the perfect crystal was a few seconds. To account for these
results, the theory evolved that real crystals consisted of small, roughly equi-
axed crystallites, 10~ to 10~% cm in diameter, slightly misoriented with respect
to one another, with the boundaries between them con31stmg of amorphous
material.

In this “mosaic-block” theory, the crystallite size limits the absorptien path,
_accounting for the mtensxty effect, while the misorientation accounts for the beam
width. The crystalhtc boundaries actually consist of arrays of dislocation hnes

but, this was not apprecnated until recent times.

Crystal growth is another area of study 1mplymg the presence of dislocations.
Volmer’s! work on nurleation, following the ideas of Gibbs,? indicated that the
layer growth of peifect crystals should not be appreciable until supersaturations
of about 1.5, sufficient for nucleation of new layers, were attained. Experi-
mentally, on the other hand, crystals were observed to grow under nearly equilib-
rium conditions; see, for example, the work of Volmer and Schultze® on iodine.
'This discrepancy between theory and experiment remained a puzzle until Frank*
resolved it by postulating that growth could proceed at low supersaturations by
the propagation of ledges associated with the point of emergence of a dislocation
at @ surface.

A number of other cases could be cited. For example, the rapid equilibra-
tion of point defects in a crystal subjected to a change in temperature suggests
the presence of internal sources and sinks for point defects in crystals. It is now
established that dislocations and arrays thereof can provide such sources and
sinks® However, these other examples in general either were developed at a
later time or were less striking than those cited above, and therefore are not
discussed further here,

THe firtal case, involving the consnderatlon of the strength of a perfect crystal,.
provided the major impetus for the development of dislocation theory, and serves
to terminate the early work on dislocations. Because of its importance in
stimulating work on dislocations, and because it involves a phenomenologmal
approach which is applicable in many other dislocation problems, this topic is
treated in detail in the following section.

M. Volmer Kmétlk der Phasenbﬂdung,”&emkopﬂ' Dresden and Leipsig, 1939.

Ty W, Gibbs, “Collected Works,” vol. I, “Thermodynaxmcs,” Yale University
Press, New Haven, Conn., 1948.

3 M. Volmer and W, Schultu Z. phys. Chem., 156: 1 (1931).

4 F. C. Frank, Disc. Faraday Soc., 5: 48, 67 (1949).
| 5D. N. Seidman and R. W. Balluﬂi {Pkys Rev., 139: A1824 (1965)] have shown
that dislocations act ‘as vacancy Sources in up-quenched gold. On the other hand,
R. S. Barnes [Phil. Mag., 5: 635 (1960)] showed that in a-bombarded copper, helium
bubbles did nof: nucleate near single dislocations (vacancies are required for such
nucleation), but that vacancies were produced at grain boundaries.



6  Dislocations in isotropic continua
Theoretical shear strength of a perfect crystal

Once it was appreciated that metals were crystalline, interest developed in the
; computatxon of the strength of perfect crystals. The classical work in this area
_ was that of Frenkel,! whose model for the shear-stress-shear-displaceinent
relation is shown in Fig. 1-2. He supposed that a crystal plastically shearing on
““arational plane passed through equivalent configurations with equal energies
and with a period equal to b, the magnitude of a simple lattice-translation vector.
He thus neglected the small end effects associated with the formation of surface
steps by the shear. The applied shear stress required to accomplish a shear
translation x is proportional to dW/dx, where W.is the energy of translation per
unit area of the plane. - As a first appro:umatlon, Frenkel took the penodxcxty
of the energy to be sinusoidal, so that

a"'ozheorsn’z'?v : . o . (l'l)
In the limit of small shear strain x/d whete dis the interplanar spacmg, Hooke’s
law applies in the form :

o=n.‘—’ . A ¢ &)

. where | " is the shear modulus Equatmg (1-1) and (1-2) in the small-strain limit,
where sin (an/b) o 21rx/b one obtains for Fineors the theoretwal shear stress,

a

. P .
_Fig. 12 The periodic lattice pocent{al and the equivalent -

value of the shear stress, wcompanymg the shear of a
perfect lattice.

13, Frenkel, Z. Phys., 37: 572 (1926).
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the value
# .

Oin IS e O
theor 2"d

L (1-3)

In marked disagreement with. the prediction of Eq. (1-3), the experimental
values for the maximum resolved shear stress required to initiate plastic flow in
metals were in the range of 10~ to 10~* x at about the time of Frenkel’
work.

~To digress for a moment, later anCStlgatOI'S noted that Eq. (1-3) was probably .
an overestimate of 0y, because the various semiempirical interatomic-force |
laws indicated that the attractive forces decreased much more rapidly with
distance than did the sinusoidal force in Fig. 1-2, and because of the possibility
of additional minima in -the W-x plot corresponding to. twin or other special
orientations. Mackenzie,! using central forces for the case of close-packed
lattices, found that oy, could be reduced to a value of uf30. This value is
likely to be an underestimate, because of the neglect of the small directional
forces which are also present in such lattices. ~Also, the contributions of thermal
stresses, treated later in detail, reduce oy, below u/30 -only near the melting
point. Thus at room témperature oy, should be in the range u/5 > &mo,
/30, say ~u/15. In excellent agreement with this estimate, the maximum
values of the resalved shear stress for the initiation of plastlc flow in (presumably
perfect) whiskers of various metals? is ~u/15. :

Recent experimental work on bulk copper® and zinc;* on the other hand
indicates that plastic deformation begins at stresses of the order of 10~* .  Thus,
except for whiskers, the discrepancy between atm and expenmental values-is
even larger than was first supposed ' . .

) Exerczse I-1. Carry out a-calculation, analogous to that
of Frenkel, using a Morse function for the interatomic
- potential, Such functions, given by

W= Wo(é_’“"._"’i'_ 28-—4(.!'--1?.)‘) - - . (1-4)

where W, and q are parameters and r, is the equilibrium
separation of -atoms, give good fits to P-¥ data, com-
pressibility, and elastic constants in fec crystals.®’ Taking
ro ~ b, the typical value @ = §/ry, and x ~r — ro, show
that the use of Eq. (1-4) in plaoe of Eq (1-1 gives the

17, K. Mackenzie, unpubhshed doctoral dissertation, Umversxty of Bristol, Bristol,
1949,

28, S, Brenner, in R. H. Doremus et aI (eds ), “Growth and Perfectxon of
Crystals » Wiley, New York, 1958, p. 3. .

3 R. F. Tinder and J. Washburn, Acta Met 12 129 (1964)

4 R. F. Tinder, J. Metals, 16 94 (1964). .

PL. A Gmfalco and V. G. Weizer, Pbys Rev., 114: 687 (1959), 120: 837 (1960)
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result oweor = ub/20d, and that the maximum stress
occurs at x = 0.138b versus x = 0.25b for the case shown -
in Fig. 1-2.- The close correspondence of this result to
that of Frenkel demonstrates the reasonableness of the
order of ‘magnitude of his estimate of oweor.

After Frenkel’s work, Masing and Polanyi,! Prandtl,? and Dehlinger? pro-
posed various defects which were precursors of the dislocation. For example,
the defects proposed by Masing and Polanyi, shown in Fig. 1-3, resemble a
polygonized structure of dislocations in a crystal composed of hard atoms bound
- by weak directional bonds.. Finally, in 1934, the édge dislocation, shown in
Fig. 1-4, was proposed by Orowan,* Polanyi,® and Taylor® to explain the dis-
crepancy between 0y, and ¢xperiment, as discussed above. In 1939, Burgers”
advanced the description of the screw dislocation, depicted in Fig. 1-5.

Observations of dislocations

In the past two decades an overwhelming number of observations have been
made which in summary provide unequivocal evidence of the existence of dis-
locations in crystals. There is such an abundance of these observations that we
can cite only a few examples here. The reader is referred to the reviews of such
observations listed at the end of this chapter for an extensive survey.

Figure 1-6, due to Bragg and Nye, shows an edge dislocation in the
two-dimensional lattice of a bubbleraft. Figure 1-7 depicts a growth spiral asso-
ciated with a dislocation emergent at its center in n-nonatriacontane; the disloca-
tion slipped out of the crystal after growth was completed leavmg behind a slip
trace. A similar spiral on a {100} face of silver is shown in Fig. 1-8; in this
picture the spiral steps are one atom layer in height and are revealed by decora-
tion and phase-contrast microscopy. Both spirals provide confirmation of
Frank’s postulate,® discussed earlier.

The strain energy of a dislocation often leads to a faster rate of chemical

_etching at the point of emergence of a dislocation at a free surface, resulting in
the formation of etch pits at such points. Similarly, because of the strain
energy, dislocations act as catalytic sites for precipitation from solid solution.

1 G. Masing and M. Polanyi, Ergeb. exact. Naturwiss., 2: 177 (1923).

2 L. Prandtl, Z. ang. Math. Phys., 8: 85 (1928).

3 U. Dehlinger, Ann. Phys., 2: 749 (1929).

4 E. Orowan, Z. Phys., 89: 605, 634 (1934).

5 M. Polanyi, Z. Phys., 89: 660 (1934).

8 G. 1. Taylor, Proc. Roy. Soc., A145: 362 (1934).

7 J. M. Burgers, Proc. Kon. Ned. Akad. Wetenschap., 42: 293, 378 (1939).
8 F. C. Frank, Disc. Faraday Soc., 5: 48, 67 (1949).



