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¢ ¢+ ALGEBRAIC OPERATIONS FOR VECTORS AND
TENSORS IN CARTESIAN COORDINATES

(s is a scalar; v and w are vectors; 7 is a tensor; dot or cross operations enclosed
within parentheses are scalars, those enclosed in brackets are vectors)

(v-w) =vw, + o,w, + v,w, = (W*V)

v X wl, = o,w, — v,w, = —[w X v],
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Note: The above operations may be generalized to cylindrical coordinates by replacing
(x, y, 2) by (r, 6, z), and to spherical coordinates by replacing (x, y, z) by (r, 6, ¢).
Descriptions of curvilinear coordinates are given in Figures 1.2-2, A.6-1, A.8-1, and
A8-2.

¢ ¢ ¢ DIFFERENTIAL OPERATIONS FOR SCALARS, VECTORS, AND
TENSORS IN CARTESIAN COORDINATES

N I T— Ty e oy VI TS i

= 2. LB _ o
Vol = 5 [Vsl, ay [Vs], = =~

dv, 9U v, v 8. e

bl e o A e R

=2 00, v, v, — % =

(V V)——ax""_ay‘l"—az (V VS)_UX£+Uy@+sz

2 2 32
V2% =(V-Vs) =95 4 985 , 95
i g =it 9

|
}.
R
|
!
;
1
1




[Vv],=[V- W],,_"z” o +"Z"

oy
[V2v], = [V - V], = -'920 e '92””
/ T _
. ﬁ a%¢ﬁ‘
/ [V =V -Wv], o
VL =[V-W], = xz 0y2
v, gt ) ﬁvx
[v-VWl,=0v,— =y yﬁ to, o~ |
= dv, v, v, 2
[V'VV]y e UXE Az UyW s 'UZE
du, du, dou,
[V'VV]Z = vxﬁ * Uyﬁ =+ UZE
= a(vxvx) ﬂ(UyUx) a(vzvx)
Skhee g e o dy i -
o) Ivp,) I,
[V-wv], = o + - 3y + 5
_Iow,) ) 4(,,)
[V-vv], = gl 3y i
] 87,,, aTyx asz
SRh G dy = 9z
% 0Ty dTy OTy
vl Ay il S
= aTzz aT.'ﬂ aTzz \\
Vorh o3 &

00, av,

dv
T:VW)=1,—+T

ax "oy T =gy

v, Jo Jv,

s 1577 Yy y

+ 7T yx 3 —07 =+ Tyz E
av o"v Jv

T agy T Tagy T ey,

Note: the differential operations may not be simply generalized to curvilinear coordi-
nates; see Tables A.7-2 and A.7-3.
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Preface

While momentum, heat, and mass transfer developed independently as branches of
classical physics long ago, their unified study has found its place as one of the funda-
mental engineering sciences. This development, in turn, less than half a century old, con-
tinues to grow and to find applications in new fields such as biotechnology,
microelectronics, nanotechnology, and polymer science.

Evolution of transport phenomena has been so rapid and extensive that complete
coverage is not possible. While we have included many representative examples, our
main emphasis has, of necessity, been on the fundamental aspects of this field. More-
over, we have found in discussions with colleagues that transport phenomena is taught
in a variety of ways and at several different levels. Enough material has been included
for two courses, one introductory and one advanced. The elementary course, in turn, can
be divided into one course on momentum transfer, and another on heat and mass trans-
fer, thus providing more opportunity to demonstrate the utility of this material in practi-
cal applications. Designation of some sections as optional (0) and other as advanced (®)
may be helpful to students and instructors.

Long regarded as a rather mathematical subject, transport phenomena is most impor-
tant for its physical significance. The essence of this subject is the careful and compact
statement of the conservation principles, along with the flux expressions, with emphasis
on the similarities and differences among the three transport processes considered. Often,
specialization to the boundary conditions and the physical properties in a specific prob-
lem can provide useful insight with minimal effort. Nevertheless, the language of trans-
port phenomena is mathematics, and in this textbook we have assumed familiarity with
ordinary differential equations and elementary vector analysis. We introduce the use of
partial differential equations with sufficient explanation that the interested student can
master the material presented. Numerical techniques are deferred, in spite of their obvi-
ous importance, in order to concentrate on fundamental understanding.

Citations to the published literature are emphasized throughout, both to place trans-
port phenomena in its proper historical context and to lead the reader into further exten-
sions of fundamentals and to applications. We have been particularly anxious to
introduce the pioneers to whom we owe so much, and from whom we can still draw
useful inspiration. These were human beings not so different from ourselves, and per-
haps some of our readers will be inspired to make similar contributions.

Obviously both the needs of our readers and the tools available to them have
changed greatly since the first edition was written over forty years ago. We have made a
serious effort to bring our text up to date, within the limits of space and our abilities, and
we have tried to anticipate further developments. Major changes from the first edition
include:

e transport properties of two-phase systems

¢ use of “combined fluxes” to set up shell balances and equations of change
* angular momentum conservation and its consequences

¢ complete derivation of the mechanical energy balance

¢ expanded treatment of boundary-layer theory

e Taylor dispersion

¢ improved discussions of turbulent transport

iii
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* Fourier analysis of turbulent transport at high Pr or Sc
e more on heat and mass transfer coefficients

enlarged discussions of dimensional analysis and scaling

* matrix methods for multicomponent mass transfer

* ionic systems, membrane separations, and porous media

e the relation between the Boltzmann equation and the continuum equations

¢ use of the “Q+W” convention in energy discussions, in conformity with the lead-
ing textbooks in physics and physical chemistry

However, it is always the youngest generation of professionals who see the future most
clearly, and who must build on their.imperfect inheritance.

Much remains to be done, but the utility of transport phenomena can be expected to
increase rather than diminish. Each of the exciting new technologies blossoming around
us is governed, at the detailed level of interest, by the conservation laws and flux expres-
sions, together with information on the transport coefficients. Adapting the problem for-
mulations and solution techniques for these new areas will undoubtedly keep engineers
busy for a long time, and we can only hope that we have provided a useful base from
which to start.

Each new book depends for its success on many more individuals than those whose
names appear on the title page. The most obvious debt is certainly to the hard-working
and gifted students who have collectively taught us much more than we have taught
them. In addition, the professors who reviewed the manuscript deserve special thanks
for their numerous corrections and insightful comments: Yu-Ling Cheng (University of
Toronto), Michael D. Graham (University of Wisconsin), Susan J. Muller (University of
California-Berkeley), William B. Russel (Princeton University), Jay D. Schieber (Illinois
Institute of Technology), and John F. Wendt (Von Karman Institute for Fluid Dynamics).
However, at a deeper level, we have benefited from the departmental structure and tra-
ditions provided by our elders here in Madison. Foremost among these was Olaf An-
dreas Hougen, and it is to his memory that this edition is dedicated.

Madison, Wisconsin R. B. B.
W.E.S.
E:N. L.
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Chapter 0

The Subject of Transport
Phenomena

§0.1 What are the frahsport phenomena?
§0.2 Three levels at which transport phgﬁomena can be studied
§0.3 The conservation laws: an example

§0.4 Concluding comments

The purpose of this introductory chapter is to describe the scope, aims, and methods of
the subject of transport phenomena. It is important to have some idea about the struc-
ture of the field before plunging into the details; without this perspective it is not possi-
ble to appreciate the unifying principles of the subject and the interrelation of the
various individual topics. A good grasp of transport phenomena is essential for under-
standing many processes in engineering, agriculture, meteorology, physiology, biology,
analytical chemistry, materials science, pharmacy, and other areas. Transport phenom-
ena is a well-developed and eminently useful branch of physics that pervades many
areas of applied science.

§0.1 WHAT ARE THE TRANSPORT PHENOMENA?

The subject of transport phenomena includes three closely related topics: fluid dynam-
ics, heat transfer, and mass trahsfq. Fluid dynamics involves the transport of momentum,
heat transfer deals with the transport of energy, and mass transfer is concerned with the
transport of mass of various chemical species. These three transport phenomena should,
at the introductory level, be studied together for the following reasons:

e They frequently occur simultaneously in industrial, biological, agricultural, and
meteorological problems; in fact, the occurrence of any one transport process by it-
self is the exception rather than the rule.

* The basic equations that describe the three transport phenomena are closely re-
lated. The similarity of the equations under simple conditions is the basis for solv-
ing problems “by analogy.”

¢ The mathematical tools needed for describing these phenomena are very similar.
Although it is not the aim of this book to teach mathematics, the student will be re-
quired to review various mathematical topics as the development unfolds. Learn-
ing how to use mathematics may be a very valuable by-product of studying
transport phenomena.

* The molecular mechanisms underlying the various transport phenomena are very
closely related. All materials are made up of molecules, and the same molecular




2 Chapter0 The Subject of Transport Phenomena

motions and interactions are responsible for viscosity, thermal conductivity, and
diffusion.

The main aim of this book is to give a balanced overview of the field of transport phe-
nomena, present the fundamental equations of the subject, and illustrate how to use
them to solve problems.

There are many excellent treatises on fluid dynamics, heat transfer, and mass trans-
fer. In addition, there are many research and review journals devoted to these individual
subjects and even to specialized subfields. The reader who has mastered the contents of
this book should find it possible to consult the treatises and journals and go more deeply
into other aspects of the theory, experimental techniques, empirical correlations, design
methods, and applications. That is, this book should not be regarded as the complete
presentation of the subject, but rather as a stepping stone to a wealth of knowledge that
lies beyond.

§0.2 THREE LEVELS AT WHICH TRANSPORT
PHENOMENA CAN BE STUDIED.

In Fig. 0.2-1 we show a schematic diagram of a large system—for example, a large piece
of equipment through which a fluid mixture is flowing. We can describe the transport of
mass, momentum, energy, and angular momentum at three different levels.

At the macroscopic level (Fig. 0.2-1a) we write down a set of equations called the
“macroscopic balances,” which describe how the mass, momentum, energy, and angular
momentum in the system change because of the introduction and removal of these enti-
ties via the entering and leaving streams, and because of various other inputs to the sys-
tem from the surroundings. No attempt is made to understand all the details of the
system. In studying an engineering or biological system it is a good idea to start with
this macroscopic description in order to make a global assessment of the problem; in
some instances it is only this overall view that is needed.

At the microscopic level (Fig. 0.2-1b) we examine what is happening to the fluid mix-
ture in a small region within the equipment. We write down a set of equations called the
“equations of change,” which describe how the mass, momentum, energy, and angular
momentum change within this small region. The aim here is to get information about ve-
locity, temperature, pressure, and concentration profiles within the system. This more
detailed information may be required for the understanding of some processes.

At the molecular level (Fig. 0.2-1c) we seek a fundamental understanding of the mech-
anisms of mass, momentum, energy, and angular momentum transport in terms of mol-

lQ = heat added to system"

N\

Fig. 0.2-1 (@) A macro-

scopic flow system contain-
W, = Work done on the system by ing N, and Oy; (b) a

the surroundings by means . : : Er
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