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Preface

Within a couple of months in 2003, in the Theory Group of Microsoft Research
in Redmond, Washington, three questions were asked by three colleagues. Michael
Freedman, who was working on some very interesting ideas to design a quantum
computer based on methods of algebraic topology, wanted to know which graph
parameters (functions on finite graphs) can be represented as partition functions
of models from statistical physics. Jennifer Chayes, who was studying internet
models, asked whether there was a notion of “limit distribution” for sequences
of graphs (rather than for sequences of numbers). Vera T. Sds, a visitor from
Budapest interested in the phenomenon of quasirandomness and its connections to
the Regularity Lemma, suggested to generalize results about quasirandom graphs
to multitype quasirandom graphs. It turned out that these questions were very
closely related, and the ideas which we developed for the answers have motivated
much of my research for the next years.

Jennifer's question recalled some old results of mine characterizing graphs
through homomorphism numbers, and another paper with Paul Erdés and Joel
Spencer in which we studied normalized versions of homomorphism numbers and
their limits. Using homomorphism numbers, Mike Freedman, Lex Schrijver and I
found the answer to Mike’s question in a few months. The method of solution, the
use of graph algebras, provided a tool to answer Vera’s. With Christian Borgs, Jen-
nifer Chayes, Lex Schrijver, Vera Sés, Balazs Szegedy, and Kati Vesztergombi, we
started to work out an algebraic theory of graph homomorphisms and an analytic
theory of convergence of graph sequences and their limits. This book will try to
give an account of where we stand.

Finding unexpected connections between the three questions above was stim-
ulating and interesting, but soon we discovered that these methods and results are
connected to many other studies in many branches of mathematics. A couple of
years earlier Itai Benjamini and Oded Schramm had defined convergence of graph
sequences with bounded degree, and constructed limit objects for them (our main
interest was, at least initially, the convergence theory of dense graphs). Similar
ideas were raised even earlier by David Aldous. The limit theories of dense and
bounded-degree graphs have lead to many analogous questions and results, and
each of them is better understood thanks to the other.

Statistical physics deals with very large graphs and their local and global prop-
erties, and it turned out to be extremely fruitful to have two statistical physicists
(Jennifer and Christian) on the (informal) team along with graph theorists. This
put the burden to understand the other person’s goals and approaches on all of us,
but at the end it was the key to many of the results.
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Another important connection that was soon discovered was the theory of prop-
erty testing in computer science, initiated by Goldreich, Goldwasser and Ron sev-
eral years earlier. This can be viewed as statistics done on graphs rather than on
numbers, and probability and statistics became a major tool for us.

One of the most important application areas of these results is extremal graph
theory. A fundamental tool in the extremal theory of dense graphs is Szemerédi's
Regularity Lemma, and this lemma turned out to be crucial for us as well. Graph
limit theory, we hope, repaid some of this debt, by providing the shortest and
most general formulation of the Regularity Lemma (“compactness of the graphon
space”). Perhaps the most exciting consequence of the new theory is that it allows
the precise formulation of, and often the exact answer to, some very general ques-
tions concerning algorithms on large graphs and extremal graph theory. Indepen-
dently and about the same time as we did, Razborov developed the closely related
theory of flag algebras, which has lead to the solution of several long-standing open
problems in extremal graph theory.

Speaking about limits means, of course, analysis, and for some of us graph the-
orists, it meant hard work learning the necessary analytical tools (mostly measure
theory and functional analysis, but even a bit of differential equations). Involving
analysis has advantages even for some of the results that can be stated and proved
purely graph-theoretically: many definitions and proofs are shorter, more trans-
parent in the analytic language. Of course, combinatorial difficulties don’t just
disappear: sometimes they are replaced by analytic difficulties. Several of these
are of a technical nature: Are the sets we consider Lebesgue/Borel measurable? In
a definition involving an infimum, is it attained? Often this is not really relevant
for the development of the theory. Quite often, on the other hand, measurability
carries combinatorial meaning, which makes this relationship truly exciting.

There were some interesting connections with algebra too. Baldzs Szegedy
solved a problem that arose as a dual to the characterization of homomorphism
functions, and through his proof he established, among others, a deep connection
with the representation theory of algebras. This connection was later further de-
veloped by Schrijver and others. Another one of these generalizations has lead to
a combinatorial theory of categories, which, apart from some sporadic results, has
not been studied before. The limit theory of bounded degree graphs also found very
strong connections to algebra: finitely generated infinite groups yield, through their
Cayley graphs, infinite bounded degree graphs, and representing these as limits of
finite graphs has been studied in group theory (under the name of sofic groups)
earlier.

These connections with very different parts of mathematics made it quite diffi-
cult to write this book in a readable form. One way out could have been to focus on
graph theory, not to talk about issues whose motivation comes from outside graph
theory, and sketch or omit proofs that rely on substantial mathematical tools from
other parts. I felt that such an approach would hide what I found the most exciting
feature of this theory, namely its rich connections with other parts of mathematics
(classical and non-classical). So I decided to explain as many of these connections
as I could fit in the book; the reader will probably skip several parts if he/she does
not like them or does not have the appropriate background, but perhaps the flavor
of these parts can be remembered.



PREFACE xiii

The book has five main parts. First, an informal introduction to the math-
ematical challenges provided by large networks. We ask the “general questions”
mentioned above, and try to give an informal answer, using relatively elementary
mathematics, and motivating the need for those more advanced methods that are
developed in the rest of the book.

The second part contains an algebraic treatment of homomorphism functions
and other graph parameters. The two main algebraic constructions (connection
matrices and graph algebras) will play an important role later as well, but they
also shed some light on the seemingly completely heterogeneous set of “graph pa-
rameters”.

In the third part, which is the longest and perhaps most complete within its
own scope, the theory of convergent sequences of dense graphs is developed, and
applications to extremal graph theory and graph algorithms are given.

The fourth part contains an analogous theory of convergent sequences of graphs
with bounded degree. This theory is more difficult and less well developed than
the dense case, but it has even more important applications, not only because
most networks arising in real life applications have low density, but also because
of connections with the theory of finitely generated groups. Research on this topic
has been perhaps the most active during the last months of my work, so the topic
was a “moving target”, and it was here where I had the hardest time drawing the
line where to stop with understanding and explaining new results.

The fifth part deals with extensions. One could try to develop a limit theory
for almost any kind of finite structures. Making a somewhat arbitrary selection,
we only discuss extensions to edge-coloring models and categories, and say a few
words about hypergraphs, to much less depth than graphs are discussed in parts
III and IV.

I included an Appendix about several diverse topics that are standard mathe-
matics, but due to the broad nature of the connections of this material in mathe-
matics, few readers would be familiar with all of them.

One of the factors that contributed to the (perhaps too large) size of this book
was that I tried to work out many examples of graph parameters, graph sequences,
limit objects, etc. Some of these may be trivial for some of the readers, others may
be tough, depending on one’s background. Since this is the first monograph on the
subject, I felt that such examples would help the reader to digest this quite diverse
material.

In addition, I included quite a few exercises. It is a good trick to squeeze a
lot of material into a book through this, but (honestly) I did try to find exercises
about which I expected that, say, a graduate student of mathematics could solve
them with not too much effort.

Acknowledgements. I am very grateful to my coauthors of those papers that
form the basis of this book: Christian Borgs, Jennifer Chayes, Michael Freedman,
Lex Schrijver, Vera Sés, Balazs Szegedy, and Kati Vesztergombi, for sharing their
ideas, knowledge, and enthusiasm during our joint work, and for their advice and ex-
tremely useful criticism in connection with this book. The creative atmosphere and
collaborative spirit at Microsoft Research made the successful start of this research
project possible. It was a pleasure to do the last finishing touches on the book in
Redmond again. The author acknowledges the support of ERC Grant No. 227701,
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provided invaluable professional, technical and personal help all the time.

Many other colleagues have very unselfishly offered their expertise and advice
during various phases of our research and while writing this book. I am particularly
grateful to Miklés Abért, Noga Alon, Endre Cséka, Gébor Elek, Guus Regts, Svante
Janson, David Kunszenti-Kovacs, Gabor Lippner, Russell Lyons, Jarik Nesetfil,
Yuval Peres, Oleg Pikhurko, the late Oded Schramm, Miki Simonovits, Vera Sés,
Kevin Walker, and Dominic Welsh. Without their interest, encouragement and
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Large graphs: an informal
introduction






CHAPTER 1

Very large networks

1.1. Huge networks everywhere

In the last decade it became apparent that a large number of the most inter-
esting structures and phenomena of the world can be described by networks: often
the system consists of discrete, well separable elements, with connections (or inter-
actions) between certain pairs of them. To understand the behavior of the whole
system, one has to study the behavior of the individual elements as well as the
structure of the underlying network. Let us see some examples.

e Among very large networks, probably the best known and the most studied is
the internet. Moreover, the internet (as the physical underlying network) gives
rise to many other networks: the network of hyperlinks (web, logical internet),
internet based social networks, distributed data bases, etc. The size of the
internet is growing fast: currently the number of web pages may be 30 billion
(3+10'%) or more, and the number of interconnected devices is probably more
than a billion. The graph theoretic structure of the internet determines, to
a large degree, how communication protocols should be designed, how likely
certain parts get jammed, how fast computer viruses spread etc.

e Social networks are basic objects of many studies in the area of sociology,
history, epidemiology and economics. They are not necessarily formally estab-
lished, like Facebook and other internet networks: The largest social network
is the acquaintance graph of all living people, with about 7 billion nodes. The
structure of this acquaintance graph determines, among others, how fast news,
inventions, religions, diseases spread over the world, now and during history.

e Biology contributes ecological networks, networks of interactions between pro-
teins, and the human brain, just to mention a few. The human brain, a network
of neurons, is really large for its mass, having about a hundred billion nodes.
One of the greatest challenges is, of course, to understand ourselves.

e Statistical physics studies the interactions between large numbers of discrete
particles, where the underlying structure is often described by a graph. For
example, a crystal can be thought of as a graph whose nodes are the atoms
and whose edges represent chemical bonds. A perfect crystal is a rather boring
graph, but impurities and imperfections create interesting graph-theoretical
digressions. 10 gram of a diamond has about 5 x 102 nodes. The structure of
a crystal influences important macroscopic properties like whether the material
is magnetizable, or how it melts.

e Some of the largest networks in engineering occur in chip design. There can
be more than a billion transistors on a chip nowadays. Even though these
networks are man-made and carefully designed, many of their properties, like

3



4 1. VERY LARGE NETWORKS

the exact time they will need to perform some computation, are difficult to
determine from their design, due to their huge size.

e To be pretentious, we can say that the whole universe is a single (really huge,
possibly infinite) network, where the nodes are events (interactions between
elementary particles), and the edges are the particles themselves. This is a
network with perhaps 10%° nodes. It is an ongoing debate in physics how
much additional structure the universe has, but perhaps understanding the
graph-theoretical structure of this graph can help with understanding the global
structure of the universe.

These huge networks pose exciting challenges for the mathematician. Graph
Theory (the mathematical theory of networks) has been one of the fastest develop-
ing areas of mathematics in the last decades; with the appearance of the Internet,
however, it faces fairly novel, unconventional problems. In traditional graph theo-
retical problems the whole graph is exactly given, and we are looking for relation-
ships between its parameters or efficient algorithms for computing its parameters.
On the other hand, very large networks (like the Internet) are never completely
known, in most cases they are not even well defined. Data about them can be
collected only by indirect means like random local sampling or by monitoring the
behavior of various global processes.

Dense networks (in which a node is adjacent to a positive percent of other nodes)
and very sparse networks (in which a node has a bounded number of neighbors)
show a very different behavior. From a practical point of view, sparse networks are
more important, but at present we have more complete theoretical results for dense
networks. In this introduction, most of the discussion will focus on dense graphs;
we will survey the additional challenges posed by sparse networks in Section 1.7.

1.2. What to ask about them?

Think of a really large graph, say the internet, and try to answer the following
four simple questions about it.

Question 1. Does the graph have an odd or even number of nodes?

This is a very basic property of a graph in the classical setting. For example, it
is one of the first theorems or exercises in a graph theory course that every graph
with an odd number of nodes must have a node with even degree.

But for the internet, this question is clearly nonsense. Not only does the number
of nodes change all the time, with devices going online and offline, but even if we
fix a specific time like 12:00am today, it is not well-defined: there will be computers
just in the process of booting up, breaking down etc.

Question 2. What is the average degree of nodes?

This, on the other hand, is a meaningful question. Of course, the average degree
can only be determined with a certain error, and it will change as technology or
the social composition of users change; but at a given time, a good approximation
can be sought (I am not speaking now about how to find it).

Question 3. Is the graph connected?

To this question, the answer is almost certainly no: somewhere in the world
there will be a faulty router with some unhappy users on the wrong side of it. But
this is not the interesting way to interpret the question: we should consider the



