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Introduction

Studies of nano-size particles have been
the rage for the past 10-15years. Effects of
nano-size particles in catalysis have been
known for quite some time, with multiple
examples of the effect of small clusters of
metal atoms such as the latent image in the
photographic process and in several catalytic
reactions. Statements often appear in texts
that reactions are catalyzed over small size
particles faster than over large particles.
However, this depends on whether or not the
reactions are structure sensitive and influ-
enced by the size of particles and the types of
atoms at the surface or interface or structure
insensitive where surface area and the size of
particles are not important. This book focuses
on nano-size particles that have an influence
on catalytic activity, selectivity, and stability.

Nano-size Au-based catalysts are cur-
rently being studied for oxidation of CO
because they have tremendous activity even
at temperatures below 0°C. These systems
are summarized as well as their activity in
water-gas shift and desulfurization reactions.
The morphology of nano-size particles is
often important in catalytic reactions and this
is the focus of a chapter concerning titania
catalysts. The photocatalytic activity of tita-
nia and zinc oxide and other materials is well
known and these are discussed in several
chapters. The use of surface science methods
to study such systems is essential and these
methods are discussed separately.

Nano-lithography is an important area
where catalysis is now making new inroads.
Another critical area concerns computational
studies of metal oxide particles which is rel-
evant in catalysis as well as a variety of other

areas. Nano-size particles have been used in
biomass conversion and several chapters
concern this area. Various reactions catalyzed
by nano-size particles are summarized such
as hydrogenation and in reactions important
in the medicinal field. A related chapter con-
cerns thin enzyme films on nano-size parti-
cles and on electrodes for use in sensing
applications for biomedical applications. The
use of nano-size particles as mimics of
enzymes is also the subject of a chapter.
Nano-size particles are also important in
electrochemical devices like fuel cells and
this area is also discussed.

This book discusses modern synthetic
methods used to make nano-size particles.
Several methods are detailed about how to
stabilize these particles that are used under a
variety of atmospheres and thermal environ-
ments. Clever methods of attachment of nano-
size particles to a variety of substrates are
given. The best methods of characterization of
such systems are also outlined by several
authors. Finally, the use of nano-size particles
in a plethora of catalytic reactions is summa-
rized and clearly this field is continually being
developed with novel syntheses, characteriza-
tion methods, and applications. Nanoparticle
catalysts and their use in catalytic processes
are areas that will continue to grow through
the future, as new methods of synthesis and
characterization are more fully developed. A
specific example is the recent emphasis on the
use of atomic layer deposition methods to
prepare lithographic-type structures with
precise deposition of active components and
supports that show excellent activity and
selectivity.
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1

Gold-Based Catalysts for CO
Oxidation, the Water-Gas
Shift, and Desulfurization

Processes

Jose A. Rodriguez

Chemistry Department, Brookhaven National Laboratory, Upton,
NY 11973, USA

1.1 INTRODUCTION

Recently, gold has become the subject of a lot of attention due to its unusual catalytic prop-
erties when dispersed on some oxide and carbide supports [1-11]. Bulk metallic gold is a very
poor agent for the activation of molecules typically used in catalysis (H,, O,, CO, C,H,, etc.)
[12,13], but atomic or molecular species bonded to low-index single crystal gold surfaces are
chemically active [14-16]. Among the transition metals, gold is by far the least reactive and is
often referred to as a “coinage metal.” In valence photoemission spectra for metallic gold [17],
states with Au 6s,p character appear from 0 to 2eV, while the Au 5d states extend from 2 to
8eV. The low reactivity of metallic Au is a consequence of combining a deep-lying valence 5d
band and very diffuse valence 6s,p orbitals [12,17].

Many experimental and theoretical studies have been focused on understanding the high
catalytic activity of gold nanoparticles supported on oxides and carbides [1-11,18]. Quantum
effects related to the small size of the particles could be responsible for the enhancement in
catalytic activity with respect to bulk gold, but it is becoming more and more clear that inter-
actions between the gold nanoparticles and the oxide or carbide support play a very impor-
tant role [10a,10d,11,18]. The edge and corner sites of a gold nanoparticle (i.e., sites which
have three to four metal atom neighbors) can bond well adsorbates like CO, O,, and SO,. They
can even perform the catalytic oxidation of CO, but for more demanding reactions the

Catalysis by Nanoparticles 1 2013 Published by Elsevier B.V.

http://dx.doi.org/10.1016/B9I78-0-444-53874-1.00001 -9



2 1. GOLD-BASED CATALYSTS

chemical activity of the isolated Au nanoparticles is not enough. A comparison of the DeSO,
activity for the Au/TiOx(110), Au/MgO(100), Au/TiC(001) surfaces illustrates the impor-
tant role played by gold <« substrate interactions. The TiO, and TiC supports are not simple
spectators [11].

The next section of the chapter will discuss fundamental studies examining the bonding
interactions of gold with metal oxide and carbide surfaces. Then, we will focus on the use of
gold-based catalysts in CO oxidation, the water-gas shift, and the destruction of SO.,.

1.2 BONDING INTERACTIONS BETWEEN GOLD AND METAL OXIDE
OR CARBIDE SURFACES

Results of scanning tunneling microscopy (STM) and transmission electron microscopy
(TEM) indicate that Au grows on most metal oxide surfaces forming three-dimensional (3D)
particles [2b,10d,19]. For example, at 300K, Au clusters nucleate mainly on step sites or on
defect sites present in the terraces of TiO,(110) [2b,20,21]. The interaction of Au with an
ideally flat TiO,(110) surface is quite weak [22], and a substantial amount of particle sintering
occurs when the system is annealed from 25 to 600K [2d,19]. In general, density functional
(DF) calculations for the adsorption of Au atoms on MgO(001) and TiO,(110) give bonding
energies below 0.5eV [4,6,8a,10]. Only in the presence of O vacancies strong bonding
interactions are seen between Au and the oxide surfaces [8a,10,22]. On the O vacancies, an
oxide— Au charge transfer takes place [8a,10]. Studies of scanning tunneling spectroscopy
(STS) indicate that the Au clusters supported on TiO,(110) have a small band gap (0.2-0.6V)
and electronic properties different from those of bulk metallic Au [2b]. This is important,
since such a difference could be responsible for the variation in chemical activity when going
from the nanoparticles to bulk gold [2b].

What happens when Au is deposited on a substrate which has physical and chemical prop-
erties different from those of an oxide? The carbides of the early-transition metals exhibit, in
many aspects, a chemical behavior similar to that of very expensive noble metals (Pt, Pd, Ru,
or Rh) [23]. Transition metal carbides exhibit broad and amazing physical and chemical prop-
erties [23-25]. Their properties may be viewed as resulting from a combination of those of
covalent solids, ionic crystals, and transition metals [23,25-27]. In recent studies [11,18], high-
resolution photoemission, STM, and DF calculations were used to study the adsorption of
gold on a TiC(001) surface. The Au«<TiC(001) interactions were much stronger than typical
Au < oxide interactions [18]. For example, the calculated binding energies for an Au atom on
TiC(001) and TiO(110) are —1.91eV [18] and —0.38eV [8al, respectively. For Au/TiC(001),
the photoemission and DF results point to the formation of Au—C bonds [18]. Overall the
bond between Au and a TiC(001) surface exhibits very little ionic character, but there is a
substantial polarization of electrons around Au [18] which enhances the chemical activity of
this metal [11,28,29].

Figure 1.1 displays electron-localization function (ELF) plots for Au, on a series of MC(001)
(M=Ti, Zr, V, and Mo) [18,30]. In all these systems, there is a substantial concentration of
electrons in the region outside the Au, unit. A similar phenomenon was observed for Au, Au,,
and other small clusters containing one layer of gold in contact with the carbide substrates
[18,30]. In the case of clusters with two layers of Au, the electron polarization for the second
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FIGURE 1.1 Calculated electron-polarization plots for a series of Au,/MC(001) surfaces (M=Ti, VC, Zr, Mo).
Taken from Ref. [30], Copyright 2010 American Chemical Society.

layer of atoms was much less pronounced than that seen for the Au,/MC(001) systems
[18,30]. On the basis of the charge polarization induced by the carbide substrates, one can
expect big differences between the chemical reactivity of 2D and 3D gold clusters. The Au,/
MC(001) systems should be very active in the bonding of electron acceptor molecules (CO,
Oz, CzH)_, C2H4, 502, etC.).

1.3 OXIDATION OF CARBON MONOXIDE ON Au-OXIDE AND
Au-CARBIDE SURFACES

The oxidation of carbon monoxide (2CO+0,— 2CO,) over metal/oxide catalysts is
significant for understanding fundamental processes associated with methanol synthesis, the
water-gas shift reaction, the reforming of alcohols, the operation of fuel cells, and automotive
exhaust controls, to mention a few major applications in the area of catalysis [2,3,6,10,13,22].
In automotive exhaust emission control, the complete oxidation of carbon monoxide is of
prime importance to meet increasingly stringent environmental regulations in a practical way
[13]. Furthermore, since the classic studies of Langmuir, CO oxidation on metal and oxide
surfaces is often viewed as an ideal reaction for fundamental investigations in heterogeneous
catalysis [2,3,6,10,13,22]. High surface area Au/TiO, catalysts are very efficient for the
oxidation of CO (6,23) [1,2b,31,32]. The bottom trace in Figure 1.2 shows how the CO oxidation
activity of an Au/TiO,(110) surface changes as a function of Au coverage [33]. A maximum
activity is found for an Au coverage of ~0.3 monolayer (ML). When these activity data are put
together with STM results [2b,32], one finds that there is a marked size effect on the catalytic
activity, with Au clusters in the range of 34 nm exhibiting the maximum reactivity. For this
size, most of the particles have a band gap of 0.2-0.6V according to scanning tunneling
spectroscopy (STS) [2b]. Particles with a larger band gap (>1V) display a lower reactivity, and
particles with metallic character (band gap ~0V) are the least active. Thus, there is a correlation
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FIGURE 1.2 Oxidation of CO on Au/TiO,(110) and Au/CeO,/TiO,(110) surfaces as a function of Au coverage.
In the case of Au/CeQ,/TiO,(110), ~12% of the titania surface was covered with ceria. Taken from Ref. [33],
Copyright 2009 National Academy of Sciences USA.

between the electronic and chemical properties of the supported Au nanoparticles. Studies of
STM indicate that exposure to CO has no effect on the morphology of the Au/TiO,(110)
surface [2b]. On the other hand, significant morphological changes occur after exposure to O,
or CO:O, mixtures. In these cases, the Au cluster density is greatly reduced as a result of
sintering [2b]. This sintering eventually leads to a decrease in the CO oxidation activity of the
Au/TiO,(110) systems.

In recent studies, the CO oxidation on Au/TiO, catalysts occurs on metal sites at the gold-
oxide interface [32,34]. Infrared-kinetic measurements indicate that O—QO bond scission is
activated by the formation of a CO—O, complex at dual Ti-Au sites at the Au/TiO, interface.
DF, which provides the activation barriers for the formation and bond scission of the CO—O,
complex, confirms this model. The observation of sequential delivery and reaction of CO first
from TiO, sites and then from Au sites indicates that catalytic activity occurs at the perimeter
of Au nanoparticles [32,34].

The catalytic activity of Au-TiO, can be improved by the addition of ceria [33,35]. The ceria
helps with the dispersion on the gold enhancing the rate of CO oxidation. Figure 1.3 shows
an STM image acquired after depositing Ce on TiO,(110) under an atmosphere of O, [33].
Most of the spots (~70%, labeled “a”) have a height of 1.3+0.2 A and correspond to small
wires of CeO, [33]. A minority of the spots (~30%, labeled “b”) have a height of 1.940.3 A and
probably correspond to (1 x 2) reconstructions of TiO,(110) induced by O, chemisorption
[33,36,37]. Figure 1.3b displays an STM image taken after depositing ~0.25ML of Au on the
CeO,/TiO,(110) surface of Figure 1.3a. The deposition of Au was done at room temperature.
One can see particles of Au that were simultaneously located on “a” and “b” sites. When STM
images for the Au/CeQO,/TiO,(110) system are compared to those collected for plain Au/
TiO,(110) [2b], the presence of ceria favors the dispersion of the gold on the titania terraces
and the metal particles are not located mainly at steps of the surface as it happens in the case



