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PREFACE

“Simplicity is the ultimate sophistication.”

THESE woRrDs of Leonardo da Vinci were recently quoted by Steve Jobs of
Apple in the book by Walter Isaacson. Simplicity was the first guiding principle in
the preparation of this introductory book. The second guiding principle was to share
our considerable industrial and academic experience in working with and teaching

about catalysis fundamentals and industrial catalytic processes.

All of us authors have worked in industry and academia, two of us as technical
consultants. Dr. Farrauto was affiliated with BASF (formerly Engelhard), Iselin, New
Jersey for 37 years having worked in environmental, chemical, petroleum, and
alternative energy fields and is now Professor of Practice in the Earth and Environ-
mental Engineering Department at Columbia University in the City of New York.
Dr. Dorazio, a research engineer at BASF (New Jersey), has worked in catalysis
research and in scale-up of catalysts for the chemical, petroleum, and environmental
fields. He is also Adjunct Professor in the Chemical Engineering Department at New
Jersey Institute of Technology (NJIT). Dr. Bartholomew, Professor Emeritus in the
Chemical Engineering Department at Brigham Young University, Provo, Utah,
worked for a year at Corning Glass (with Dr. Farrauto) in auto emissions control
after which he taught and conducted research and consulting for 41 years in catalyst
design/deactivation and reactor/process design for environmental cleanup and syn-
thetic fuel production. He continues to be active in writing, teaching short courses, and
consulting. All of us have been widely engaged in various degrees of teaching industrial
catalysis at the undergraduate and graduate levels. Bartholomew and Farrauto have
coauthored the widely used text and reference book entitled “Fundamentals of Industrial
Catalytic Processes,” a more advanced, in-depth version of the topics in the current book
and a likely sequel to this book.

Industrial catalytic applications are seldom taught in undergraduate chemistry and
chemical engineering programs, a surprising fact, given the large number of commercial
processes that utilize catalysis. Thus, we accepted the challenge of writing a book that
would introduce senior level undergraduates and new graduate students to this exciting
field of catalytic processes, which is fundamental to chemical engineering and chemistry
as practiced in industry. The need for a thorough understanding of fundamental
principles of chemistry and catalysis is given. The transition of this knowledge to
their commercial applications is our objective, especially for the many chemistry and
chemical engineering students who spend much of their careers working in industry
with catalytic processes. We also include the many professionals of varying disciplines
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who suddenly find themselves with a new assignment of working on a catalytic process
without previous training in the basics of catalysis and catalytic processes.

Our goal is to explain the fundamental principles of catalysis and their applica-
tions of catalysis in a simple, introductory textbook that excites those contemplating an
industrial career in chemical, petroleum, alternative energy, and environmental fields in
which catalytic processes play a dominant role. The book focuses on non-proprietary,
basic chemistries and descriptions of important, currently used catalysts and catalytic
processes. Considerable practical examples, recommendations, and cautions located
throughout the book are based on authors’ experience gleaned from teaching, research,
commercial development, and consulting, including feedback from many students and
associates. Suggested readings (reviews, books, and journal articles) are included at the
end of each chapter to encourage interested readers to deepen their knowledge of these
topics. Process diagrams have been simplified to provide an overview of principal
process units (e.g., reactors and separation units) and important process steps, including
reactant and product streams. Nevertheless, it should be recognized that commercial
engineering process flow sheets include many other details and specifications, for
example, piping, pumps, valves, heat exchangers, and other process equipment needed
to operate and control the plant, including special equipment for plant start-up, catalyst
pretreatment, purges, safety, regeneration, and so on.

Chapters 1-5 introduce the reader to basic principles of catalysis, including
reaction kinetics, simple reactor design concepts, and catalyst preparation, characteri-
zation, and deactivation. Accompanying each chapter are questions and suggested
readings. Chapters 6-15 describe by category applications and practice in the industry,
including process chemistry, conditions, catalyst design, process design, and catalyst
deactivation problems for each catalytic process. Chapter 6 describes hydrogen and
syngas generation processes for different end applications. Processes for the synthesis of
ammonia, methanol, and hydrocarbon liquids (Fischer—Tropsch process) are presented
in Chapter 7. Processes for selective catalytic oxidation to (a) commodity chemicals,
including nitric, cyanic, and sulfuric acids, formaldehyde, and ethylene oxide, and
(b) specialized products such as acrylic acid, maleic anhydride, and acrylonitrile are
presented in Chapter 8. Catalytic processes for hydrogenation of vegetable oils, olefins,
and functional groups for highly specialized products are presented in Chapter 9.
Catalytic processes in refining of petroleum to fuels are presented in Chapter 10.
Selected commercial processes utilizing (a) homogeneous catalysts, (b) commercial
enzymes, and (c) polymerization catalysts are described in Chapter 11. Chapters 12, 13,
and 14 summarize features of important processes for catalysts used in environmental
control of gaseous emissions from (a) stationary sources (e.g., power plants) and mobile
sources, including (b) gasoline- and (c) diesel-fired vehicles. The final chapter 15 gives a
brief summary of (1) catalytic processes for production of bio diesel and ethanol fuels
from edible biomass which will ultimately find application to production of similar fuels
from non-edible cellulosic biomass and (2) catalyst technology for the emerging
hydrogen economy with emphasis on fuel cell technology.

New York, New York Robert J. Farrauto
Iselin, New Jersey Lucas Dorazio
Provo, Utah Calvin H. Bartholomew

22 November 2015
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