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Foreword

Mathematics continually surprises and delights us with how useful its most abstract
branches turn out to be in the real world. Indeed, physicist Eugene Wigner’s mem-
orable phrase! “The unreasonable effectiveness of mathematics” captures a critical
aspect of this utility. Abstract mathematical ideas often prove to be useful in rather
“unreasonable” situations: places where one, a priori, would not expect them at all!
For instance, no one who was not actually following the theoretical explorations in
multi-antenna wireless communication of the late 1990s would have predicted that
division algebras would turn out to be vital in the deployment of multi-antenna
communication. Yet, onte performance criteria for space-time codes (as coding
schemes for multi-antenna environments are called) were developed and phrased as
a problem of design of matrices, it was completely natural that division algebras
should arise as a solution of the design problem. The fundamental performance
criterion ask for n x n matrices M; such that the difference of any two of the M; is
of full rank. To anyone who has worked with division algebras, the solution simply
leaps out: any division algebra of index n embeds into the n x n matrices over a
suitable field, and the matrices arising from the embedding naturally satisfy this
criterion.

But there is more. Not only did division algebras turn out to be the most natural
context in which to solve the fundamental design problem above, they also proved to
be the correct objects to satisfy various other performance criteria that were devel-
oped. For instance, a second, and critical, performance criterion called the coding
gain criterion turned out to be naturally satisfied by considering division algebras
over number fields and using natural Z-orders within them that arise from rings
of integers of maximal subfields. Other criteria (for instance “DMG optimality,”
“good shaping,” “information-losslessness” to name just a few) all turned out to be
satisfied by considering suitable orders inside suitable division algebras over number
fields. Indeed, this exemplifies another phenomenon Wigner describes: after saying
that “mathematical concepts turn up in entirely unexpected connections,” he goes
on to say that “they often permit an unexpectedly close and accurate description
of the phenomena in these connections.” The match between division algebras and
the requirement of space-time codes is simply uncanny.

The subject of multi-antenna communication has several unsolved mathematical
problems still, for instance, in the area of decoding for large numbers of antennas.
Nevertheless, division algebras are already being deployed for practical two-antenna

Eugene P. Wigner, The unreasonable effectiveness of mathematics in the natural sciences,
Comm. Pure Appl. Math., 18 Feb. 1960, 1-14
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systems, and codes based on them are now part of various standards of the Insti-
tute of Electrical and Electronics Engineers (IEEE). It would behoove a student
of mathematics, therefore, to know something about the applicability of division
algebras while studying their theory; in parallel, it is vital for a communications
engineer working in coding for multiple-antenna wireless to know something about
division algebras.

Berhuy and Oggier have written a charming text on division algebras and their ap-
plication to multiple-antenna wireless communication. There is a wealth of exam-
ples here, particularly over number fields and local fields, with explicit calculations,
that one does not see in other texts on the subject. By pairing almost every chapter
with a discussion of issues from wireless communication, the authors have given a
very concrete flavor to the subject of division algebras. The book can be studied
profitably not just by a graduate student in mathematics, but also by a mathe-
matically sophisticated coding theorist. I suspect therefore that this book will find
wide acceptability in both the mathematics and the space-time coding community
and will help cross-communication between the two. I applaud the authors’ efforts
behind this very enjoyable book.

B.A. Sethuraman
Northridge, California
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Introduction

A central simple algebra over a field k is a finite dimensional k-algebra with center
k which does not have any proper two-sided ideals. The most elementary example
is the Hamilton quaternion algebra. More generally, a division ring with center k
can be viewed as a central simple k-algebra, where the algebra structure is induced
by the multiplication law. Central simple algebras and division rings have been
extensively studied, and have appeared in many other areas of mathematics, such
as ring theory, number theory, representation theory of finite groups, algebraic ge-
ometry or classification theory of quadratic forms. Surprisingly, they have recently
been proven useful in coding theory.

The ambition of this book is to provide an introduction to the theory of central
simple algebras accessible at a graduate level, starting from scratch and including
fundamental concepts such as splitting fields, Brauer group, crossed product alge-
bras, index and exponent, as well as algebras with involution. Even though most of
our exposition is rather classical, we have tried to focus on explicit techniques and
examples, most of them coming from coding theory. The codes presented in this
book are there to illustrate the theory of central simple algebras, and do not give
an exhaustive view of the work done on the theory of algebraic space-time coding.

The use of division algebras for space-time coding is usually attributed to the
seminal work by B. A. Sethuraman et al. [48]. Number fields and cyclic algebras
were discussed, which have been a favourite tool for space-time design (see for
example [12, 6, 40, 13, 32, 55]). Other algebras have been explored, such as
Clifford algebras [27], or crossed product algebras (e.g. [57]).

Alternative studies considered the use of maximal orders (e.g. [56]) or non-associa-
tive algebras (e.g. [42]).

Some surveys on coherent space-time coding [36, 45] and one survey on non-
coherent space-time coding [35] are now available. These works are just repre-
senting a few of the different approaches studied so far in the area of space-time
coding, which is still an active field of research. These are just pointers for the
interested reader, and by no mean provide a complete list.

In Chapter 1, we introduce the concept of a central simple k-algebra and give the
first examples of such algebras, including quaternion algebras. We then explain how
they can be embedded into matrix algebras, and how this result may be used in
coding theory. In Chapter II, we have a closer look at the properties of quaternion
algebras. We also prove that the only finite dimensional division R-algebras are,
up to isomorphism, R, C or the Hamilton quaternion algebra H. We then provide
examples of quaternion based codes. The results presented in Chapter III are the
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core of the theory. We first study the stability of central simple k-algebras under
algebraic operations such as tensor product or base field extension. We then prove
that any central simple k-algebra is isomorphic to a matrix algebra over a central
division k-algebra, and establish that every k-automorphism of such an algebra
is inner. We also focus on the structure of the centralizer of a simple subalgebra,
which is a crucial tool in the study of maximal subfields and splitting fields of central
simple algebras, which will be developed in Chapter IV. As an application of this
theory, we define the reduced characteristic polynomial of an element of a central
simple algebra, and introduce the concept of the reduced norm, which generalizes
the determinant of a matrix. The latter can in turn be used to reinterpret code
parameters. In Chapter V, we define the Brauer group Br(k) of a field k, which
allows us to study globally all central simple k-algebras. We show that this group
is an abelian torsion group, and use this result to define the exponent of a central
simple k-algebra. We end this chapter by establishing the existence of a primary
decomposition of a central simple k-algebra. In Chapter VI, we characterize central
simple algebras which have a Galois maximal subfield. This leads to the notion of a
crossed product algebra. We then present the standard results on these particular
algebras. At the end of this chapter, crossed product algebras are used to construct
families of codes. Chapter VII is devoted to cyclic algebras, that is, the case where
the Galois maximal subfield is cyclic. At this occasion, an overview of the theory
of central simple algebras over local and number fields is given without proofs.
Explicit criteria to decide whether a given central simple algebra over a global field
is division are established. Finally, these criteria are used to design codes based on
cyclic division algebras. Chapter VIII focuses on central simple k-algebras of degree
4. We show that these algebras are crossed products over a biquadratic extension
L/k, and a full description by generators and relations is given. We also provide a
criterion to check if such an algebra is division in terms of the parameters defining
the algebra when k is a number field, and applications to code constructions are
given. In Chapter IX, the concept of a unitary involution on a central simple
algebra is defined. The existence of unitary involutions is then investigated. We
particularly focus on the case of crossed product algebras. We then explain how
central simple algebras with a unitary involution may be used in coding theory via
the construction of unitary codes, and we give various examples.

We would like to sincerely thank N. Markyn, S. Pumpluen, A. Quéguiner-Mathieu,
B.A. Sethuraman, J.-P. Tignol, T. Unger and R. Vehkalahti for their careful read-
ing of substantial parts of this book. Their pertinent comments enabled us to
dramatically improve the quality of the exposition.



CHAPTER 1

Central simple algebras

This chapter contains the necessary definitions and background on central simple
algebras. After some preliminaries on k-algebras and tensor products, we introduce
central simple algebras and give some examples. We then show how to identify
central simple algebras with matrix subalgebras. As a first illustration, we explain
how central simple algebras may be used in coding theory, and examples of code
constructions are presented.

I.1. Preliminaries on k-algebras

In the sequel, k& will denote an arbitrary field.

DEFINITION 1.1.1. A k-algebra is a pair (A, ), where A is a k-vector space and
p:Ax A— Ais a k-bilinear map, called the product law of A. We write aa’
for p(a,a’), and call it the product of the elements a and a’.

A k-algebra A is called associative (resp. commutative, resp. unital) if the prod-
uct law is associative (resp. commutative, resp. has a unit element 14).

ExaMPLES 1.1.2.

(1) The ring of polynomials k[X] is a commutative, associative and unital
k-algebra.

(2) If L/k is a field extension, then L is a commutative, associative and unital

k-algebra.
O

DEFINITION 1.1.3. A k-algebra morphism is a k-linear map
f: A — B satisfying
f(aa") = f(a)f(d’) for all a,a’ € A.
If A and B are unital, we require in addition that f(14) = 1. A k-algebra

isomorphism is a k-algebra morphism which is bijective. In this case, the inverse
map f~! is also a k-algebra morphism.

DEFINITION 1.1.4. A subalgebra of a k-algebra A is a linear subspace B of A which
is closed under the product. If A is unital, we require in addition that 14 € B. It
is unital, (resp. associative, resp. commutative) whenever A is.

ExXAMPLES 1.1.5.

(1) The intersection of an arbitrary family of subalgebras of a k-algebra A is again
a subalgebra of A.
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(2) The image of any k-algebra morphism f: A — B is a subalgebra of B.

DEFINITION 1.1.6. The center of a k-algebra A is by definition the set
Z(A)={z€ A|az = za for all a € A}.
It is a commutative subalgebra of A whenever A is associative.

ExaMPLE 1.1.7. The matrix algebra M, (k), consisting of n X n matrices with
entries from k, is a unital k-algebra with center k (we identify k& with the set of
scalar matrices). O

REMARK I.1.8. If A is an associative unital k-algebra, then addition and product
naturally endow A with a ring structure. In particular, every subalgebra of A is
also a subring, and every k-algebra morphism is also a ring morphism. Moreover
if 14 # 04 (i.e. A is not zero), k identifies with a subalgebra of Z(A) (hence a
subalgebra of A).

Indeed the k-bilinearity of the product law and the properties of 14 imply that we
have

(Ala)a=14a(Na) = (Aa)la = a(A14)

foralla € Aand A € k,s0 k-14 C Z(A). One may verify that k-1 4 is a k-subalgebra
of Z(A). Hence the map

k— Z(A)
A—> A1y

is a non-trivial k-algebra morphism, which is injective since k is a field. O

In this book, all k-algebras will implicitly be assumed to be unital, associative, and
finite-dimensional over k. Moreover, we will systematically identify k and k-1 4.

DEeFINITION 1.1.9. A division k-algebra is a k-algebra which is also a division ring
(that is, every non-zero element is invertible).

At this stage, it may be worth making a few remarks on subalgebras of finite
dimensional division algebras generated by a single element.

Let D be a finite dimensional division k-algebra, and let d € D. We denote by
k[d] the smallest subalgebra of D containing d, and by k(d) the smallest division
subalgebra of D containing d. Clearly, we have
kld] = {P(d) | P € k[X]}.
Since D is finite dimensional over k, so is k[d]. Therefore, the successive powers of
d cannot be linearly independent, and the evaluation morphism
k[X] — D
Y prs P(d)

cannot be injective. Hence, its kernel is generated by a unique monic polynomial
fax € k[X], and we have an isomorphism of k-algebras

k[X]/(pak) =5 kld].
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Since D has no zero divisors, k[d] is an integral domain and (pg) is a prime ideal,
hence maximal. Thus k[d] is a field, k[d] = k(d) and we have

[k(d) : k] = deg(ax)-
Moreover, g is irreducible since it generates a maximal ideal of k[X], and
Hd,k(d) = 0.

We will use these facts without further reference from now on.

DEFINITION [.1.10. Let D be a division k-algebra, and let d € D. The polynomial
ftd,k is called the minimal polynomial of d € D over k.

We now recall the main properties of the tensor product of k-algebras.

If A and B are k-algebras, their tensor product A ®; B may be viewed as the
k-vector space spanned by the symbols a ® b,a € A,b € B subject to the relations:

(a+d)®@b=a®b+d @b
a@b+V)=a®@b+ax
(Aa)@b=a® (A\b) = A(a®b)
foralla,a’ € A,b,bt/ € B, \ € k. The symbols a®b are called elementary tensors.
The product on A ®j B is the unique product law satisfying
(a®b)(a’ @) =aad’ ®bY for all a,a’ € A, b, b € B.
If (ei)ier and (¢))jes are k-bases of A and B as k-vector spaces, then

(e; ® 6;')(2'!]')61)(_] is a k-basis of A ®; B. In particular A ®j B is finite-dimensional
as a k-vector space if and only A and B are, and in this case we have

dimy (A @, B) = dimy(A) dim(B).

Moreover, if ¢ : A — C and ¢ : B — C are two morphisms of unital k-algebras
satisfying

pla)y(b) = Y(b)p(a) for all a € A, b € B,
there exists a unique morphism h : A ®x B — C of unital k-algebras satisfying
h(a®1p) = ¢(a) and h(14 @ b) = ¢(b) for alla € A, b € B.

In particular, if f : A — A’ and ¢ : B — B’ are two morphisms of unital
k-algebras, there exists a unique k-algebra morphism

feg:AexB— A' @, B
satisfying

(f@g)(a®b)= f(a)® g(b) for all a € A,b € B.

If f and g are isomorphisms, so is f ® g.
Finally, if A and B are unital, the k-algebra morphisms

A— AR B B— A®y B

a—>a®lp and b— 14®0Db

are injective.
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Now let L/k be an arbitrary field extension. If A is a k-algebra and B is an
L-algebra, then A ®; B has a natural structure of L-algebra, where the structure
of L-vector space is defined on elementary tensors by

AMa®b)=a®bforall \ € L,a € A,b € B.

In particular, A ®; L has a natural structure of an L-algebra. Moreover, A ®x L is
finite dimensional over L if and only if A is finite dimensional over k. In this case,
we have

dimp, (A ®k L) = dimg(A).
If A and B are unital, we have a natural isomorphism of L-algebras
(A®r L) ®y, B 21, A®y B.

Similarly, B ®; A and L ®; A have a natural structure of L-algebras, and we have
an isomorphism of L-algebras

B (L A) =L B A.

If now A and B are two unital k-algebras, we have a natural L-algebra isomorphism
(A®k B) ® L =1, (A®k L) ®L (B ® L).
Finally, if k € K C L is a tower of field extensions, we have
(ARr K)®kx L =1 A®y L.
The justification of the tensor product properties described above is quite lengthy,

so we leave the details for now. For the sake of completeness, the reader may find
full constructions and proofs in Appendix A.

We end this section with an elementary lemma.

LEMMA 1.1.11. Let A be a k-algebra, let n > 1 be an integer and let L/k be a field
extension. Then the following properties hold:

(1) we have a natural k-algebra isomorphism M, (k) ®r A = My (A);
(2) we have a natural L-algebra isomorphism M, (k) ®x L = M, (L).

Proof.
(1) The k-algebra morphisms
M, (k) — M, (A) A — M, (A)
M—s M o0 s ad,

have commuting images, and therefore there is a unique k-algebra morphism
¢ : My (k) @ A — M, (A) satisfying

(M ® a) = aM, for all M € My (k),a € A.

Since M, (k) ®x A and M,,(A) have the same dimension over k, it suffices to prove
that ¢ is surjective. Let E;; be the matrix with coefficient 1 at row ¢ and column
j and coefficients 0 elsewhere. For any matrix M’ = (m;;) € M, (A), we have

o(Y By @miy) = M,
1,J

which proves the surjectivity of ¢.
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(2) By (1), we have an isomorphism of k-algebras M,, (k) ®x L = M,,(L). One may
check that this isomorphism is also L-linear. O

REMARK [.1.12. In particular, we have a natural isomorphism
M (k) ®x My, (k) 2% Myun(k)
which maps M ® N onto the Kronecker product of M and N. O

I1.2. Central simple algebras: the basics

We now define the main object of this book.

DEFINITION L.2.1. Let & be a field. A k-algebra A is simple if it has no non-trivial
two-sided ideals.

The next lemma gives an elementary but very useful property of simple algebras.

LEMMA 1.2.2. Let k be a field, and let ¢ : A — B be a k-algebra morphism. If A
is simple, then ¢ is injective. If moreover A and B are finite dimensional over k
and dimy (A) = dimg(B), then ¢ is an isomorphism.

Proof. Assume that A is simple. Since ker(¢) is a two-sided ideal of A, we have
ker(¢) = (0) or A. The latter case cannot happen since ¢(1) = 1. Hence ¢ is
injective; the last part is clear. O

We now give examples of simple algebras.
ExAMPLES 1.2.3.
(1) Any division ring D is a simple Z(D)-algebra.

(2) Let k be an arbitrary field. Then M,,(k) is a simple k-algebra.

Indeed, let J be a non-zero ideal of M, (k), and let M = (m;);; be a non-zero
element of J. Fix two integers r, s such that m,s # 0. For all ¢ =1,...,n, we have

= o
m,, By MEg; = Ey;,
and therefore,

In=) E;=)» m E.ME;cJ

since J is a two-sided ideal. Hence J contains a unit, so J = M, (k).

(3) Similar arguments show that if D is a division k-algebra, then M, (D) is a
simple k-algebra for all r > 1.

a

We now give our first concrete example of a simple k-algebra. Let k be a field of
characteristic different from 2.

Let a,b € k™, and consider the k-linear subspace (a, b)x of M4 (k) generated by the
matrices

Iy =

cooH
oo O
o -=-Oo o
—_o oo
OO = O
o= R e i an B8 S
= o OO0
OoOR OO
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0 0 b 0 0 0 0 —ab

o 0o o | .. [0 0 b o0

=11 0 0 0o 'Y Tl o —a o0 o
0 -1 0 0 1 0 0 0

Straightforward computations show that these matrices are linearly independent
over k, and that we have

i? = a,j* =b,(ij)® = —ab and ji = —ij.

It easily follows that (a, b)) is a k-subalgebra of My(k) of dimension 4 over k.

DEFINITION 1.2.4. Let k be a field of characteristic different from 2. The k-algebra
(a,b) is called a quaternion k-algebra.

PROPOSITION 1.2.5. Let k be a field of characteristic different from 2. For every
a,b € k*, the k-algebra (a,b)r is a simple k-algebra, with center isomorphic to k.

Proof. Let us first determine the center of (a,b).
Let gy = x +yi+ zj + tij € (a,b)r and assume that ¢; € Z((a,b);). Then we have
iqp =iz +yi+ zj + tij) = xi + ay + zij + taj
and
q1i = (x +yi+zj + tij)i = 21 + ay — 2ij — taj.
Since by assumption iq; = q1i, we have therefore z =t = 0 and thus ¢ = = + yi.
Since we have jq1 = ¢q17, we get xj — yij = xj + yij in a similar way, so y = 0 and
g1 = x € k. Hence Z((a,b)x) = k.
Let us prove now that (a,b); is simple. For, let I be a non-zero two-sided ideal of
(a,b)k, and let g1 = x + yi + zj + tij € I,q1 # 0. We then have

1 1
é(iql —qt) = zij +taj € I and §(iq1 +qi) =zt +ay € 1.

Since by assumption x,y, z or t is non-zero, it follows that zij + taj or xi + ay is

non-zero. Assume for example that ¢ = 2i7 + taj is not zero, that is z # 0 or
t # 0. We have

1. . , ;

5(ie2 — g2j) = ~bzi € I and 5(ig2 +qej) = tabe L.

If t # 0, then tab € k* is a unit of (a,b)y; if z # 0, then —bzi € k* is a unit of

(a,b)r (with inverse —(abz)~'i). In both cases, I contains a unit, so I = (a,b)y.

The case i + ay # 0 may be dealt with in a similar way and is left to the reader.
O

REMARK 1.2.6. Later on, we will see a criterion to decide whether or not (a, b); is
a division algebra. For the moment, let us just point out that it can actually be a
division algebra for some well-chosen values of a and b. For example, if £k =R and
a = b= —1, we obtain the Hamilton quaternion algebra H, which is known to be a
division ring. We will recover this fact in the next chapter. O

DEFINITION 1.2.7. A k-algebra A is called central if Z(A) = k. A central simple
k-algebra is a k-algebra which is central and simple.



