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Preface

This book is the second volume of selected journal papers of my publications during 2001-
2010. The first volume of the selected journal papers during 1983-2000 was published by
Science Press in 2000. These two volumes represent my main research works on
electromagnetitic scattering, radiative transfer and space-borne microwave remote sensing
during three decades. Especially, this second volume collected my works when 1 was
appointed as the Principle Scientist of the state major basic research (973) project
(2001CB309400) in 2000-2006 by the State Ministry of Science and Technology of China.

The polarimetric imagery of synthetic aperture radar (POL-SAR) technology is one of
most important advances in space-borne microwave remote sensing during recent decades.
Part 1 deals with fully polarimetric scattering theory and information retrieval from POL-SAR
images. The parameterized model of random non-spherical scatter media and Mueller matrix
solution are developed. The deorientation theory and a new set of the parameters of
polarimetric scattering targets are developed for terrain surface classification. The MPA
(mapping and projection algorithm) technique of computer simulation for POL-SAR image of
complicated natural scene is developed. The MPA is further developed to simulation of
bistatic POL-SAR images. Multi-aspect SAR images are employed for automatic
reconstruction of three-dimensional objects. Making use of the Mueller matrix solution and
morphological processing, the digital elevation mapping of the earth surface is inverted from a
single-pass POL-SAR image data. Two-threshold expectation maximum and Markov random
field algorithms are studied to make automatic change detection from multi-temporal SAR
images over the urban area and some earthquake regions. The Mueller matrix at P band with
the Faraday rotation is also studied and recovered. Inversion of multi-parameters of terrain
canopy surface is also inverted. The algorithm of phase unwrapping of interferometric SAR
(INSAR) is studied. The probability density functions of multi-look four Stokes parameters
are derived. Some POL-SAR applications, such as ship detection and moving target
refocusing etc. , are also included.

Part 2 deals with the vector radiative transfer(VRT) theory for inhomogeneous scatter
media. The VRT takes account of multiple scattering, emission and propagation in random
scatter media, and quantitatively leads to insights of elucidating and understanding EM wave-
terrain surface interaction. Meanwhile, it is extensively applicable to carrying out data
interpretation and validation, and to solving the inverse problem, e. g. iteratively, physically
or statistically. In this part, iterative solutions of multiple scattering and emission from
inhomogeneous dense scatter media, e. g. snowpack, and inhomogeneous multi-layers non-
spherical scatter media, e. g. vegetation canopy, are discussed. Three-dimensional VRT
equation (3D-VRT) for spatially inhomogeneous random scatter media for high resolution
observation is also investigated. The Mueller matrix solution for a pulse wave incidence upon
layered media of random non-spherical scatterers is developed. It has been applied to several
issues, such as detecting lunar subsurface, monitoring and early warning the debris flow and

landslides.
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Great amount of remote sensing data and images in temporal and spatial scales presents a
challenge how to quantitatively extract the information from data-image and make new
knowledge based on the information. Part 3 devotes to data validation from satellite-borne
microwave remote sensing, e. g. SSM/I, AMSR-E, FY etc. The overall reviews of Chinese
FY and HY satellite remote sensing, and the state 973 project “Theory and application for
retrieval and fusion of spatial and temporal quantitative information of complex natural
environment” are presented. Described by VRT and characteristic indexes e. g. polarization,
scattering and anomalous one, the terrain surface moisture mapping, draught and flooding,
snow-frost, sandstorm and desertification etc. , based on multi-year passive microwave remote
sensing, are studied. Some natural algorithms such as genetic algorithm, artificial neural
network, and Getis statistics etc. are applied to parameter retrievals. Correlations of active
SAR and passive SSM/I observations over snowpack and oceanic surfaces are also
demonstrated. Data fusions of Radarsat SAR and DMSP SSM/1 for monitoring sea ice, and
Landsat ETM+ and ERS-2 SAR for classification of urban terrain surfaces are studied.

Part 4 deals with computational electromagnetics, especially for composite scattering of a
target presence on or above a randomly rough surface. It includes the generalized forward-
backward method with the spectral accelerate algorithm (GFBM-SAA), the hybrid analytic
Kirchhoff and numerical moment method (KA-MoM), the finite element method (FEM) with
DDM (domain decomposition method) for large scale problem and FEM-TLQSA (two level
quasi-stationary algorithm) for the Doppler spectrum of flying target over rough surface, the
finite difference in time domain (FDTD) method for calculation of near-far fields from 3D
target-rough surface etc. Bidirectional analytic ray tracing (BART) approach is developed for
numerical calculation of scattering from 3D complex electric large target over rough surface.
Using the technique of step-frequency radar, 3D imaging and reconstruction of a complex
target on rough surface is then presented.

China had successfully launched its first lunar exploration satellite Chang E-1(CE-1) on
October 24, 2007. Part 5 presents the research works on the modeling, data-image simulation
and data validation for lunar exploration in both passive/active microwave remote sensing. As
the first part, the works on Chinese Chang E(CE-1) lunar program, including theoretical
model for brightness temperature simulation (T, ) of lunar surface media, CE-1 data
validation and retrieval of lunar regolith layer thickness from multi-channel CE-1 T}, data, and
evaluation of global inventory of Helium-3 in lunar regolith, are reported. As the second
section, scattering modeling and numerical SAR image simulation of the randomly cratered
lunar surface, and high frequency (HF) radar range echoes from lunar surface-subsurface
structures are presented.

I would like to acknowledge the collaborations with my colleagues and graduate students.
They are: Huang Xingzhong, Xu Feng, Ye Hongxia, Fa Wenzhe, Cao Guangzheng, Kuang
Lei, Wei Zhigiang, Chen Hao, Ding Rui, Gong Xiaohui, Chang Mei, Liang Zhichang, Zhang
Nanxiong, Chen Fei, Luo Ling, Dai Eryan, Qi Renyuan, Yan Fenghua, Wang Dafang, Dai
Junwen, and postdoctorals Li Zhongxin, Liu Peng, Han Zheng, Peng Jing.

As a summary work in my research life during these decades, it is my great pleasure and
honor to present these two-volume books to the colleagues and graduate students.
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Polarimetric Scattering Indexes and Information
Entropy of the SAR Imagery for Surface Monitoring"

Jin Ya-Qiu and Chen Fei

Abstract—The Mueller matrix solution and eigenanalysis of the
coherency matrix for completely polarimetric scattering have been
applied to analysis of the synthetic aperture radar (SAR) imagery.
Copolarized and cross-polarized backscattering for any polarized
incidence can be obtained. The polarization index is usually de-
fined as a parameter to classify the difference between polarized
scattering signatures from the terrain surfaces. In this paper, the
eigenvalues of the coherency matrix and information entropy are
derived to directly relate with measurements of the copolarized and
cross-polarized indexes. Thus, it combines the Mueller matrix sim-
ulation, the information entropy of the coherence matrix, and two
polarization indexes together and yields a quantitative evaluation
for surface classification in the SAR imagery. This theory is applied
to analysis of the AirSAR images and fields measurements.

Index Terms—Entropy, polarimetric indexes, surface classifica-
tion, synthetic aperture radar image.

[. INTRODUCTION

YNTHETIC aperture radar (SAR) imagery technology is
S one of most important advances in spaceborne microwave
remote sensing during recent decades. Completely polarimetric
scattering from complex terrain surfaces can be measured [12].
Fully understanding and retrieving information from polari-
metric scattering signatures of natural media have become a
key issue for SAR remote sensing and its broad applications.

During recent years there has been extensive research on po-
larimetric scattering for SAR imagery [2]. Numerical simulation
of polarimetric scattering from natural media via the Mueller
matrix solution has been studied [3], [9]. The coherency matrix
and eigenanalysis of information entropy have been studied for
polarimetry of natural media in SAR imagery [1], [5].

To indicate the difference between vertically (vv) and
horizontally (hh) copolarized backscatterings, the polarization
index was usually defined to classify the polarized scattering
signature from different natural media.

However, the entropy and eigenanalysis need full Mueller
matrix measurement and have not been directly related with the
backscattering signatures. In other words, how to present the
entropy and eigenanalysis merely from backscattering measure-
ment has not been demonstrated.

In this paper, the relationship between the entropy and copo-
larized, cross-polarized backscattering indexes is established.
Thus, it can now combine the Mueller matrix solution, the en-
tropy of the coherency matrix, and measurements of the po-
larization indexes together and yield a quantitative description
of the natural media. As examples, this theory is applied to an

AirSAR image and field measurements for surface monitoring
and classification.

II. MUELLER AND COHERENCY MATRICES WITH
EIGENANALYSIS

As a polarized wave Fj,.(x, 1) is incident upon the natural
media, the scattering field is written as

E\'s — Lkr F\'v F\'h . Evi
Eha’ h r Fhv F'llll Ehi
eikr —

F'Eim'(x- d)) (I)
T

where the 2 x 2-D (dimensional) complex scattering amplitude
function F can be measured by the polarimetry. The incident
polarization is indicated by the elliptic and orientation angles
(x. ¥). Using the Mueller matrix solution of vector radiative
transfer equation [3], [9] and (1), the scattered Stokes vector
(four Stokes parameters) can be obtained as

1,(0, ¢) = M(0, ¢ ™ — B0, o) - Li(x. ¥). (2

Making use of the Mueller matrix solution of vector radiative
transfer theory, the theoretical model and numerical simulation
of polarimetric scattering from the layering scatter media have
been studied [6]. The Mueller matrix M is constructed by the
nondiagonal extinction matrix %, and the functions (F,, F,),
p.q.s.t = v, h. The copolarized and cross-polarized backscat-
tering coefficients o, and o, polarization degree mn, for scat-
tered Stokes echo with partial polarization, and other functions
can be numerically calculated.

In either the measurement or theoretical simulation, a key
issue is to understand the scattering mechanism through the
Mueller matrix solution. The Mueller matrix is a 4 x 4-D real
matrix with complex eigenvalues and eigenvectors. To be phys-
ically realizable, this matrix must satisfy the Stokes criterion
together with several other restrictive conditions [10]. Unfortu-
nately, however, these restrictions do not have any direct phys-
ical interpretation in terms of the eigenstructure of the Mueller
matrix. The coherency matrix C is applied to the study of polari-
metric scattering of SAR images [1], [5]. Define the scattering
vector as

-1 3
t E [F\'\‘ + ﬂxhs Fv\' = ﬂl}l* F\'h + Fh\'~ "'(th - FIW)]T

- % (A, B, C. iD|T 3)
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Fig. 1 Entropy H versus index CPI with variations of A and &.

(8) from the full Mueller matrix solution. Then, the entropy H
of (7) is calculated using P; of (16)—(20). It can be seen that
the function /; is related with the total vv and hh copolarized
power oy, + oyv: % is due to the difference between oy, and
oy and Py is due to depolarization oy,,. They are modulated
by the media configuration and randomness via the parameters
A and 6. As the medium becomes more random or disordered, §
increases, and A approaches zero. Vice versa, as the medium be-
comes more ordered, ¢ decreases, and A increases. Thus, the re-
lationship between the entropy H and backscattering measure-
ments 7,,(pq = vv, hh, hv) is established.

Define the copolarized (CPI) and cross-polarized indexes
(XPI), respectively, as

CPI =10log,y(onn/ovy) (dB)
XPI =56. (22)

The question in Section II is answered that the entropy H is
directly related with backscattering indexes CPI and XPI via
(16)—+22).

IV. DEMONSTRATION WITH AIRSAR IMAGERY

Fig. 1 presents the theoretical relationship between the en-
tropy H and index CPI with variations of the parameters A and
. The entropy H is calculated by (16)—(20), i.e., via oy, Oy,
onv. and variations of A and 6. It can be seen that as the medium
becomes more random (¢ increases) and CPI becomes smaller,
H will be increased. Vice versa, as the medium becomes more
ordered and CPI becomes larger, H will be decreased. The bold
line in Fig. 1 is for the case of A = 0 and 4 = 0. More random-
ness will shift 7-CPTupward. Or vice versa, the ordered or less
random medium will move H—-CPI downward. The distance of
the line /—CP1 from this solid line indicates how much random
the medium might be.

Fig. 2 presents an AirSAR image of total power of o, o,
and oy, at the L-band over a Jack Pine area of Canada (near
the Prince Albert National Park, about 103.33°W, 53.9°N). The
image data from some typical areas such as the lake, an is-
land surface, sparse trees, and thick forest (see the frames in the
figure) are chosen, and their H, CPI, and XPI are compared.

Fig. 2 AirSAR image of total power @, oy, and o), at L-band.
0.85 S T
ake
@03 " Island
0.75 A Sparse Trees
0.70 1 A Thick Forest
i
>
Q.
o
=
C
48]
0 1 2 3 4 5 6 7 8 9 10
CPI (dB)
Fig.3  Entropy H and index C'IT for surface classification from AirSAR data.
Line 1: A = 0.257, 6 = 0.176, Line 2: A = 0.318, & = 0.156, Line
3: A = 0.365,6 = 0.118 Line4: A = 0,6 = 0, Line 5; A = 0.731,

6 = 0.0265.

To demonstrate the H—CPI relationship from the AirSAR
imagery, Fig. 3 shows discrete points of the H—CPI from four
regions of Fig. 2. The H is first rigorously calculated by polari-
metric data of the Mueller matrix, i.e., the eigenvalues of co-
herency matrix C' of (4). Using the AirSAR data oy, oy, Ovn,
and the averaged 4 in the respective region, the lines are cal-
culated by (16)—(20) with appropriate A to match the center of
discrete data. All 6 and A are listed in the figure title. The bold
line is for the case of A = 0 and 4 = 0. The lines to match
discrete data indicate how far the data in the region are from the
case of A = 0 and § = 0 and how random the media are. It can



