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Preface

The first edition of this book appeared in 1984 and covered the literature
until the end of 1982 (one chapter dealt with much of 1983). The present
volume is based on the literature published since then until approximately
mid-1992. As before, it attempts to highlight the most important advances
in all the main areas of natural products research, focusing on structure,
chemistry, synthesis, and this time, where appropriate, biosynthesis. Each
chapter is necessarily selective but the scope is extended by frequent
citation of recent reviews.

R.H.F,
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1 Carbohydrates
K.J. HALE and A.C. RICHARDSON

1.1 Introduction

Svnthetic carbohvdrate chemistry has undergone a renaissance in the last
decade, and the purpose of this chapter is to highlight some of the more
significant advances that have taken place in the area. All aspects of the
* subject are reviewed annually in the Royal Society of Chemistry publica-
tion Specialist Periodical Reports: Carbohydrate Chemistry. =

1.2 Recent developments in O-glycosidation methodology
The historical methods'~!? used for O-glycosidation have been discussed in
some detail in a series of monographs,’® and in the following sections we
will emphasise some of the more significant developments that have
occurred in glycosidation technology since 1982.

Thioglycosides have now emerged as one of the most important classes
of glycosyl donor for complex glycoside synthesis. They are conveniently
prepared by a number of routes that include reaction of peracetylated
sugars with a thiol and a Lewis acid catalyst; ' reaction of a methyl
glycoside with a thioalkylsilane and a Lewis acid;'>' treatment of a
suitably protected sugar hemiacetal with a phosphine and an alkyl disul-
phide.!” or by Mitsunobu reaction of a lactol with a thiol nucleophile.’
The main advantage of thioglvcosides as glycosyl donors lies in their ability
to withstand a wide variety of chemical transformations, and subsequently
to undergo glycosvlation with an acceptor alcohol, after having been
converted into a reactive sulphonium intermediate by complexation with a
soft thiophilic reagent. A wide variety of thiophilic electrophiles and metal
ions are available for this purpose, all of which operate under mild
conditions that do not disrupt acid- and base-sensitive functionality that
mayv be present in the reactants. By judicious choice of reagent, reaction
solvent, and substituent at C(2), thioglycoside donors can be conveniently
converted into either 1.2-cis- or 1.2-rrans-glycosides with fair to good levels
of stereocontrol.

A powerful activator of thiomethylglycosides is the combination of
benzeneselenyl triflate and 4A molecular sieves in dry toluene. It permits
rapid glycosidation even at —0°C,'® and leads to almost exclusive forma-
tion of 1,2-rrans-glveosides when an acyl or amido group is located at C(2)
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Scheme 2 i, PhSeOTf, PhMe, —‘l(')"C, 0.5 h (99%. o/ = 84:16).

of the donor. In the case of thioglucoside (1) and thiomannoside (5), with
non-participatory groups at C(2), the 1,2-trans products are again predom-
inant (Schemes 1 and 2).

Benzeneselenyl triflate is an especially valuable promeoter for the
preparation” of synthetically challenging sialic acid oligosaccharides from
thiomethylglycosides. In the system shown in Scheme 3, either the a- or
B-lirked isomers could be obtained as major products depending on
whether 1,2-dichloroethane or acetonitrile was used as reaction solvent.'®

Other good thioglycoside activators, for the formation of 1,2-trans
glycosidic bonds to donors with participatory groups at C(2), are
N-bromosuccinimide,'® methyl triflate,'” and dimethyl(methylthio)sulpho-
‘nium triflate (DMTST).>

The synthesis of 1,2-cis-glycosides from 1-thioalkylglycoside donors is
usually less successful and is best accomplished when there is a non-
participatory group at C(2) of the donor, and when methyl sulphenyl
bromide is employed as the promoter.?' However, even this regimen gives
only modest 1,2-cis selectivity with l-thioalkylglucosides (Scheme 4) and
I-thioalkylmannosides (Scheme 3).
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Scheme 3 i, PhSeOT{, (CICH,).. -23°C, 0.5 h (63%. o/f = 16:84); ii. PhSeOTi, MeCN,
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Scheme 5 i. MeSBr. CH-Cl,. RT. 15 h (84%. p/a = 2.4:1).

For many years the preparation of 2-deoxy-glycosides from 2-deoxy-
glycosyl bromides was fraught with difficulties due to the extreme lability
of this class of glycosyl donor. The added stability, ease of preparation. and
excellent reactivity of 2-deoxy-thioalkylglvcoside donors now makes these
an ideal choice for the preparation of 2-deoxy-a-glucosides (Scheme 6).'°

Sinay has reported a novel method for activating thioalkylglycosides that
involves treatment with a one-electron transfer reagent such as tris(4-
bromophenyl)ammonium hexachloroantimonate (TBPA™")."* This gener-
ates a thioglycosyl radical cation which breaks down into a thiyl radical
(which dimerises to a disulphide) and a stabilised glycosyl cation which can
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Scheme 8 i, (p-BrC,,HQ;N*'SbCl,,‘. MeCN, - 25°C. 4.5 h (80% .Bla = 20:1).

undergo glycosylation (Scheme 7). If a participatory group is located at
C(2), this method leads to formation of 1,2-trans-glycosides exclusively.
Good trans selectivity is also maintained with ethyl or phenyl 2,3,4,6-tetra-
O-benzyl-1-thio-B-D-glucopyranosides provided the glycosylations are con-
ducted in acetonitrile at low temperature (Scheme 8). The B selectivity that
tends to be observed in glycosylations that are performed in nitrile solvents
has been ascribed to formation of an a-nitrilium intermediate as the
reactive glycosylating agent (Scheme 7).2**

Sinay has also found that phenylthioglycosyl radical cations can be
generated electrochemically in acetonitrile, by performing electrolyses at
50 mA in an undivided cell with lithium tetrafluoroborate as a supporting

B”Oév»
BnO + BnO
ﬁﬁ BnO Bn&ﬁ

(22)

Scheme 9 i, Undivided electrolytic cell, LiBF,, MeCN, 50 mA. RT. 15 h (73%. p/a = 3:1).
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electrolyte.” The yields of disaccharides are typically in the 70-90% range,
and most importantly the technique is compatible with many commonly
encountered protecting groups such as benzyl ethers, acetals, and benzoate
esters (Scheme 9). The main difference between the TBPA™ and the
electrochemical mediated oxidation processes is the mode of electron
transfer from sulphur. In the TBPA™" process an inner-sphere mechanism
is postulated whereby electron transfer takes place via a TBPA™—
thioglycoside coordinated complex, while for the electrochemical protocol
an outer-sphere mechanism may operate.

A promising class of thioglycoside donors that are effective for the
preparation of 2-aminoglycosides is thioglycosyl xanthates (Scheme 10).%*
These undergo efficient glycosidation after activation with DMTST or
copper (II) triflate, giving mainly 1,2-cis-pyranosides in dichloromethane,
and 1,2-rrans-pyranosides in acetonitrile.

Another series of thioglycoside donors that were originally introduced
by Hanessian,” and later exploited by Woodward’s cowcrkers in the
erythromycin synthesis,'” are thiopyridyl and thiopyrimidinyl glycosides.
These aglycones are transformed into reactive leaving groups by coordina-
tion with either mercury (II) salts,? silver triflate!” or methyl iodide.?
These are then displaced by alcohols to form glycosides. The methodology
is of particular value for the preparation of sensitive macrocyclic glyco-
sides, as illustrated by an example in a recent route to oleandomycin
developed by Tatsuta and coworkers (Scheme 11).%

Kochetkov has reported an efficient, stereospecific, 1,2-cis-pyranoside
synthesis that employs 1,2-frans-glycosyl thiocyanates as glycosyl donors
and tritylated sugar derivatives as the glycosyl acceptors, with trityl
perchlorate as the glycosidation catalyst (Scheme 12).® These reactions

Ph Ph

o
(o)
\&% i ° i 1
= BnO —— O,
(23) ONO, N,
o (24) (25) S
o +
o
BnO 0o OH
N, o
o ii BnO (2)
(26) BnO BnO
BnO Bno
OMe

BnO OMe

Scheme 10 i, NaN, (NH,),Ce(NO,),, MeCN. ~20°C, 3 h (40%); ii, KS(CS)OEt, E{OH, RT,
5 h (90%); iii, Cu(OTf)a, MeCN, RT (85%. Blar = 6:1).
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(27) (29)

Scheme 11 i, AgOTI (6 equiv), (28) (5 equiv), 4A mol. sieves, PhMe-CH,Cl, (42%).
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(o]
AcO _oAc AcO _0OAc AcO
0 o) i \ (32)
AcO + AcO SGN —— OA
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Scheme 12 i, Ph;C*ClO,7(0.1 equiv), CH,Cl,, RT (59%).
CoN T+
."/O (-S\,caN r -0
R —_— + Tr—C=N=S + Tr*
RO \.:O;—Tr £ RO
' OSu
Sug 9

Scheme 13

appear to proceed by clean Sy2 inversion at the anomeric centre, initiated
by complexation of the thiocyanate nitrogen with the triphenylmethyl
cation; this leads to attack of the trityl ether oxygen at the anomeric carbon
of the donor (Scheme 13). Provided there is a non-participatory group at
C(2) of the donor, the reaction delivers 1,2-cis-pyranosides exclusively.
Conversely, 1,2-trans-pyranosides are available from primary trityl ethers
and donors with an acyl group present at C(2), although with secondary
trityl ethers, mixtures of «- and B-linked disaccharides are obtained.

A general protocol for 1,2-cis-pyranoside synthesis with high stereocon-
trol has been developed by Mukaiyama®® and Nicolaou®*! (Scheme 14),*!
that was later extended to the synthesis of 2-deoxyoligosaccharides
(Scheme 15).%" It utilises 1-fluorosugars as glycosyl donors in the presence
of an alcohol acceptor, tin (II) chloride, silver perchlorate, and 4A
molecular sieves. Other promoters used are tin (II) chloride-silver tri-
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Scheme 14 i. n-Bu,NF. THF, 0 to 25°C (98%) ; ii, Et,NSF;, N-bromosuccinimide, CH,Cl,, 0
10 25°C (90%., a/f = 1:1); iii, SnCl,, AgCl0,. Et,0, 4A mol. sieves, -15 to 25°C (80% offf =
1521)-
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Scheme 15 i, n-Bu,NF. THF, 010 25°C (100%); ii, Et,NSF5, NBS, CH,Cl,, 0 to 25°C (80%);
iii, SnCl,, AgClO,, Et.0, 4A mol. sieves, =15 10 25°C (65%).
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Scheme 16 i. SnCl,, Ph;CClO,, 4A mol. sieves, Et,0, -15°C (96%, o/f = 85:15).

flate,*? silicon tetrafluoride,® boron trifluoride-etherate,® and triflic

anhydride.* or for the relativelv inaccessible 1.2-cis-ribofuranosides, trityl
perchlorate, tin (II) chloride® and 4A molecular sieves in ether (Scheme
16). For an excellent account of all the early chemistry of glycosyl fluorides
the reader 1s referred to a review published by Micheel and Klemer in
1961,” and more recent discussions by Penglis. 3 Card® and Tsuchiya.*’
A Jarge number of methods now exist for the preparation of glycosyl
fluorides. one of which involves treatment of a thiophenylglycoside with
N-bromosuccinimide and diethylaminosulphur trifluoride (DAST)
(Schemes 14 and 15).%' Other reagents that convert thioalkylglycosides
into glycosyl fluorides include N-bromosuccinimide and an HF-pyridine



