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Foreword

The subject of this treatise, the restricted problem of three bodies,
occupies a central place in analytical dynamics, celestial mechanics, and
space dynamics. Entry into celestial mechanics and space dynamics can
be gained by the study of the problem of two bodies. To penetrate the
fundamental problems, the number of participating bodies must be
increased from two to three. This step is critical. Not only is the two-
body problem solved—and the meaning of ‘“‘solution” may be different
for astronomers, engineers, and mathematicians—but a general under-
standing exists regarding this dynamical system. The problem of three
bodies on the other hand is neither solved nor is the behavior of the
dynamical system completely understood.

The solar system provides few applications of the general problem
of three bodies. This results in an unusual situation where a more
general problem having considerable complexity is less useful than a
comparatively simple formulation. Also it is important to realize that
more is known about the restricted problem than about the general
problem.

This volume is strongly influenced by the creators of modern dynamics,
H. Poincaré and G. D. Birkhoft. Poincaré, in his Méthodes Nouvelles de
la Mécanique Céleste and also in his famous Mémoire Couronné, ‘‘Sur
le probléme des trois corps et les équations de la dynamique,” uses the
problem of three bodies as his favorite example when presenting his
work in dynamics. The same is true for G. D. Birkhoft’s Dynamical
Systems, and for C. L. Siegel’s Vorlesungen iiber Himmelsmechanik.
A. Wintner’s Analytical Foundations of Celestial Mechanics was originally
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vi Foreword

planned to treat the problem of three bodies, especially the restricted
problem, but it actually presented more of the mathematical foundations
than of the celestial mechanics. It is interesting to note that H. Happel’s
book is entitled Das Dreikirperproblem, and the subtitle reads “Vor-
lesungen iiber Himmelsmechanik,” while the second volume of K.
Stumpft’s Himmelsmechanik displays the subtitle “Das Dreikorper-
problem.” How intimately the problem of three bodies is connected
with celestial mechanics and with dynamics in general when titles,
subtitles, contents, applications, and examples become interchangeable!

The applications of the restricted problem to celestial mechanics
form the basis of some lunar and planetary theories. The modern
applications to space mechanics are probably even more cogent if not
more numerous than the classical applications. The implications of the
restricted problem for cosmogony and stellar dynamics are also numerous.
Finally, it can be shown that a great variety of dynamical systems can
be presented by equations of motion which are formally identical with
the equations of the restricted problem. One measure of the importance
of a scientific endeavor is its effect on peripheral fields. While authors
from Euler to Siegel recognized astronomy and dynamics as the only
peripheral fields, today we know that space mechanics and stellar
dynamics are fields which benefit equally.

The interest in space sciences rejuvenated celestial mechanics, and
the well-established tools of the latter were immediately applied. Some
of the problems were not really new and the proven methods of classical
celestial mechanics—in the hands of the masters—produced immediate
results. I think of several solutions of the drag-free earth-satellite
problem, for instance, which today may be considered settled. It is a
perturbation of the two-body problem, and the success in solving it is
partly explained by the popularity of satellite problems in classical
celestial mechanics. Other problems in space dynamics, closely associated
with the restricted problem, are of considerable importance and interest
today. Many of these problems are new, and in what follows one of
them will be contrasted to a classical problem. Consider the famous
classical three-body problem, the sun-earth-moon combination and the
determination of the motion of the moon. We might think about two
large bodies, the sun and the earth, which move around each other in
approximate circles, and in their field a third body, the moon, which
moves on an approximate ellipse. This configuration is stationary in a
sense, since no collisions take place. This is also true for the motion of
a Trojan asteroid under the continued influence of the sun and Jupiter.
On the other hand, one of the central problems in space science is to
create artificial bodies which may be required to move on orbits con-
necting the close neighborhood of two natural celestial bodies. Some-
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times collision orbits are desired. Problems with close approaches and
collisions were hardly ever treated in classical celestial mechanics and
these problems became important in the new science of space dynamics.

The use of three essentially different approaches to dynamics, the
qualitative, the quantitative, and the formalistic, is dictated by the
special advantages of each and is described in the Introduction, where
a number of references to the history of the restricted problem are also
given.

T'he first chapter introduces the problem of three bodies and formulates
the equations of motion in inertial and in rotating coordinate systems.
The relation of the restricted problem to the general problem of three
bodies is described and illustrated with examples. Several applications
to cosmogony and stellar dynamics are also outlined. Chapter 2 discusses
reductions of the problem and offers a comprehensive treatment of
streamline analogies.

Chapter 3 is concerned with regularization and shows how the equa-
tions of motion can be written in a system free of singularities. This
subject 1s the feature which distinguishes a work on classical celestial
mechanics from one on modern applications. This chapter is probably
the most important one for the reader who is working in the field of
space mechanics. Chapter 4 is devoted to the principal qualitative
aspect of the restricted problem-—the curves of zero velocity, several
uses of which are discussed. The regions of permissible motion and the
location and properties of the libration points are established. Motion
and nonlinear stability in the neighborhood of these equilibrium points
are treated in detail in Chapter 5.

Chapter 6 contains a short introductory treatment of Hamiltonian
dynamics in the extended phase space. Chapter 7 applies the principles
and methods of the previous chapter to the restricted problem and to
its regularization. The generating functions that are used are derived
with emphasis on justification and motivation. A natural way to introduce
the concept of perturbation theory is presented.

Chapter § discusses the problem of two bodies in a rotating coordinate
system and treats periodic orbits in the restricted problem, following
H. Poincaré and G. D. Birkhoff. Chapter 9 presents the quantitative
aspects of the restricted problem. The results of G. Darwin, E. Stromgren,
and F. R. Moulton are discussed and several of the recently established
lunar and interplanetary orbits in the Soviet and American literature
are compared. Chapter 10 is devoted to modifications of the restricted
problem, such as the elliptic problem, the three-dimensional problem,
and Hill’s problem.

V. SZEBEHELY



Preface

This volume has been developed from my lectures and seminars on
various aspects of celestial mechanics, dynamics, the restricted problem
of three bodies, periodic orbits, regularization, and space dynamics.
While directed primarily to the graduate student, it is intended to be
sufficiently comprehensive to serve as a reference and advanced text on
many applications of celestial mechanics. One purpose is to familiarize
those readers who are concerned with the space applications of celestial
mechanics with the next step after the problem of two bodies. The
student of celestial mechanics will find both classical studies and recent
developments in the restricted problem of three bodies with a survey
of the pertinent literature.

This is the first book devoted to the theory of orbits in the restricted
problem. My aim is to build a bridge between books written for the
astronomer, mathematician, space engineer, and student of dynamics.
Instead of developing the subject separately for each of these professions,
it is hoped that the single subject of this volume will be useful for all
its readers. Astronomers will find more references to analytical dynamics
than is usual in textbooks on celestial mechanics; workers in the field
of dynamics will read about astronomical applications; the needs of
mathematicians and engineers will be met by the problem of establishing
the totality of possible motions of our dynamical system.

Teaching experience shows that students are interested in historical
reviews and remarks in the field of celestial mechanics, which is so rich
in traditions and in cultural background material. Such comments are
collected at the end of each chapter with the discussions of the pertinent
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X Preface

references. Most chapters contain a generous amount of basic mathe-
matical information. I make it a point to extend the foundations more
than necessary for the building, in order to establish a more solid
edifice and offer to the reader the opportunity of proceeding with his
own applications.

My guiding principle has been to inform the reader of the motivation
and purpose of the developments, hoping to inspire his enthusiastic
interest in the subject. I try to avoid unnecessary epsilontics in the
mathematical parts and highly specialized and undefined terms in the
applications. Mathematics is a tool in dynamics, not a goal. The
Wintnerian turnaround from the problem of three bodies to mathematics
is avoided, and an attempt is made to emphasize the dynamics. I subject
the brilliance of Poincaré and of G. D. Birkhoff to scrutiny and explana-
tion rather than to competition. My aims are to summarize G. Darwin’s
eloquence, to expand Siegel’s terseness, to generalize Charlier, and to
particularize Moulton and E. Strémgren. Special attention is paid to
the Soviet literature of the past two or three decades; it contains many
significant contributions to celestial mechanics and space dynamics.
Recent numerical results on earth-moon trajectories are compared with
previous results, and classical orbit computations are brought up to date.

April, 1967 V. SZEBEHELY
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Introduction

The purpose of dynamics is to characterize the totality of possible
motions of a given dynamical system. Such a characterization does not
necessarily mean an explicit, closed-form, general solution of the
problem since this is seldom possible, and when it is possible, it is most
of the time neither meaningful nor helpful in understanding the behavior
of the system. An example is the problem of two bodies, which is
considered solved since the properties of the totality of possible motions
are known. Although the coordinates describing the motion of the
bodies participating in the problem cannot be represented as explicit
functions of the time in closed form, the problem is nevertheless
considered solved.

Qualitative, quantitative, and formalistic dynamics are the three
major approaches to the understanding of the behavior of dynamical
systems. The qualitative approach is probably the most elegant and
sometimes the most powerful. The formalistic method is the basis of
classical celestial mechanics. The quantitative approach is often the most
popular among astronomers and engineers who may want to find one
particular solution of a problem rather than to study the behavior of
the dynamical system. Examples are the ephemerides of the planets,
representing particular solutions of the astronomers’ n-body problem
and Apollo trajectories, being particular solutions of the engineers’
problem.

Qualitative methods in dynamics are well suited to the treatment of
such questions as stability, existence problems, integrability, and
reducibility. The names of H. Poincaré and G. D. Birkhoff are associated
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2 Introduction

with qualitative dynamics; Hill’s name is seldom thought of in this
connection, in spite of his use of the zero velocity curves to establish
limiting regions. His method is probably one of the most powerful and
successful qualitative ideas in the restricted problem.

It is sometimes said of qualitative dynamics that its results are not
helpful to “practical” men (to the “‘users’ as opposed to the “‘creators”).
This misconception is partly because some of the qualitative results in
dynamics have not yet been interpreted and some of these results are
of theoretical interest only.

Knowledge of certain qualitative properties of a dynamical system
may be much more valuable than numerical solutions. An example is
the existence question of periodic orbits. Solutions of nonintegrable
dynamical systems are never known along the whole time axis unless
they are of periodic or asymptotic nature. This is seen when we consider
an attempt to establish a particular solution of the differential equations
of a dynamical system with an electronic computer. Not attempting for
the moment to evaluate such an undertaking, let us visualize the computer
output as the time increases without limit and as various error sources
contribute to the printouts. Unless some systematic behavior of the
result is discovered, sooner or later the computer output becomes
meaningless and no valuable information about the dynamical system
will be obtained along the whole time axis. The orbit or the behavior
of the system will remain unknown in spite of the numerical work.

Another example is furnished by one of the fundamental questions
of dynamics: the description of the totality of possible motions of a
dynamical system. For nonintegrable systems this is a major problem
as no closed-form general solution is available. The practical importance
of knowing all possible orbits between the earth and the moon does not
need emphasis, since selection of an orbit “best” suited for a certain
mission requires information regarding the possible choices. A formalistic
approach to this problem is not fruitful, for even if it should furnish
convergent series which give the general solution, the nature, the
properties, and the totality of the solution could not in general be
determined from such series. The quantitative approach to this problem
is to select a region of the initial conditions which is of practical interest
and to compute as many orbits as possible in this region. This set of
orbits is called the ““totality of orbits of interest.”” The deficiency in this
approach is the possible omission of useful orbits or of whole families
of useful orbits. When the possible range of initial conditions is con-
siderable, the establishment of families of orbits according to six varying
initial conditions is almost a hopeless task numerically. The description
of the totality of possible motions should come from a combined approach
(numerical and formalistic) with qualitative dynamics leading and
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organizing the steps. One of the most practical and most important
problems in applied celestial mechanics, the selection of a suitable orbit,
is therefore equivalent to one of the most advanced problems of
qualitative dynamics.

Turning now to the formalistic approach we enter the stronghold of
classical celestial mechanics. The formalistic methods are also called
general perturbation methods, and the principal mathematical tools are
series expansions. In order to have a general perturbation method the
initial conditions are kept arbitrary in the solution. Justification of the
method from a mathematical point of view requires scrutiny of the
convergence of the series with respect to the variables. It is ironic that
one of the qualitative results of dynamics, attributed to Poincaré, states
that the series used in celestial mechanics are in general divergent.
Nevertheless, finite parts of such series are often extremely useful in
celestial mechanics since they do give results in agreement with obser-
vations. Questions connected with the behavior of the system as the
time increases to infinity cannot, of course, be answered by such series
solutions. The classical series of celestial mechanics become of little use
when bodies approach each other closely and when they collide. Since
such orbits are of central importance in modern dynamics, new formal-
istic approaches have had to be devised.

The hopefully expected ultimate answer of representing the totality
of solutions as ‘“‘simple” functions of the initial conditions and of time
may come from formalistic dynamics. Such a result can probably be
expected from a combined effort of the three major approaches with the
formalistic approach taking the lead. Newton’s approach to dynamics
was to find just such explicit expressions representing the motion of
dynamical systems. Advances in celestial mechanics and in other
branches of science with mathematical orientation show more or less
the same steps. First comes the attempt to describe the field of interest
with simple analytic expressions. This leads of necessity to successive
approximations and series solutions if the first attempt for simple
closed-form solutions fails. Those fields, such as the ‘solvable”
dynamical systems, in which the first step furnishes results, are con-
sidered solved and are soon abandoned. The quantitative approach to
dynamics is not unlike the first step because it gives a particular solution
in a simple form: a set of numbers representing the coordinates as
functions of time. Those fields in which sufficient interest exists for
establishing general solutions, but which at the same time are not
“integrable” and therefore are not amenable to simple general solutions,
are graduated to the second phase of mathematical physics: to series
solutions. Some problems are solved at this stage if the series solutions
furnish the properties of the general solution. This is seldom the case



