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Preface to the first edition

The framework of this book was first conceptualized in the late nineteen eighties.
However, the writing of this book began while the author was on sabbatical, July 1991
through June 1992, at the University of California, Berkeley, from the University of
Western Ontario, London, Ontario, Canada. Over half of the book was completed
before the author returned to Canada after his sabbatical. With full-time teaching,
research, the arrival of a younger daughter, and the moving in 1996 from Canada to the
University of Nebraska, Lincoln the author has only completed the project of writing
this book very recently. Owing to the long span of time for the writing, there is no doubt
that many relevant publications may have been omitted by the author.

The latter has to admit that a book of this nature is influenced, without exception,
by many authors and examples in the field of random vibration. The original purpose
of writing this book was to provide an advanced graduate level textbook dealing, in a
more systematical way, with analytical techniques of nonlinear random vibration. It was
also aimed at providing a textbook for a second course in the analytical techniques of
random vibration for graduate students and researchers.

In the introduction chapter reviews in the general areas of nonlinear random vibration
appeared in the literature are quoted. Books exclusively dealing with and related to are
listed in this chapter. Chapter 2 begins with a brief introduction to Markovian and
non-Markovian solutions of stochastic nonlinear differential equations. Chapter 3 is
concerned with the exact solution of the Fokker-Planck-Kolmogorov (FPK) equation.
Chapter 4 presents the methods of statistical linearization (SL). Uniqueness and accuracy
of solutions by the SL techniques are summarized. An introduction to and discussion on
the statistical nonlinearization (SNL) techniques are provided in Chapter 5. Accuracy of
the SNL techniques is addressed. The methods of stochastic averaging are introduced
in Chapter 6. Various stochastic averaging techniques are presented in details and their
accuracies are discussed. Chapter 7 provides briefly the truncated hierarchy, perturba-
tion, and functional series techniques.

C.WS. To
Lincoln, Nebraska 2000



Preface to the second edition

Various theoretical developments in the field of nonlinear random vibration have
been made since the publication of the first edition. Consequently, the latter has been
expanded somewhat in the present edition in which a number of errors and misprints
has been corrected.

The organization of the present edition remains essentially the same as that of the
first edition. Chapter 1 is an updated introduction to the reviews in the general areas
of nonlinear random vibration. Books exclusively dealing with and related to analytical
techniques and applications are cited. Chapter 2 is concerned with a brief introduction
to Markovian and non-Markovian solutions to stochastic nonlinear differential
equations. Exact solutions to the Fokker-Planck-Kolmogorov (FPK) equations are
included in Chapter 3. Methods of statistical linearization (SL) with uniqueness and
accuracy of solutions are presented in Chapter 4. Some captions and labels of figures
in this chapter have been changed to commonly used terminology. Chapter 5 deals
with the statistical nonlinearization (SNL) techniques. Section 5.5 is a new addition
introducing an improved SNL technique for approximating multi-degree-of-freedom
nonlinear systems. Methods of stochastic averaging are presented in Chapter 6. In
the present edition, more detailed steps are added and some reorganization of steps
are made. Chapter 7 includes truncated hierarchy, perturbation, and functional series
techniques. In the present edition, more steps have been incorporated in the Volterra
series expansion techniques. An appendix presenting a brief introduction to the basic
concepts and theory of probability, random variables, and random processes has been
added to the present edition. This new and brief addition is aimed at those readers who
need a rapid review of the prerequisite materials.

C.WS. To
Lincoln, Nebraska 2011
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1

Introduction

For safety, reliability and economic reasons, the nonlinearities of many
dynamic engineering systems under environmental and other forces that are treated
as random disturbances must be taken into account in the design procedures. This
and the demand for precision have motivated the research and development in
nonlinear random vibration. Loosely speaking, the field of nonlinear random
vibration can be subdivided into four categories. The latter include analytical
techniques, computational methods, Monte Carlo simulation (MCS), and system
identification with experimental techniques. This book is mainly concerned with the
first category and therefore the publications quoted henceforth focus on this
category. The subject of computational nonlinear random vibration is dealt with in
a companion book that is published recently [1.1].

Itis believed that the first comprehensive review on nonlinear random vibration
was performed by Caughey [1.2]. Subsequently, other reviews appeared in the
literature [1.3-1.15], for example. There are books exclusively concerned with and
related to nonlinear random vibration [1.16-1.24]. Many books [1.25-1.39] also
contain chapter(s) on nonlinear random vibration.

While it is agreed that there are many techniques available in the literature for
the analysis of nonlinear systems under random excitations, the focus of the present
book is, however, on those frequently employed by engineers and applied scientists.
It also reflects the current interests in the analytical techniques of nonlinear random
vibration.

Chapter 2 begins with a brief introduction to Markovian and non-Markovian
solutions of stochastic nonlinear differential equations. This serves as a foundation
to subsequent chapters in this book.

Chapter 3 presents the exact solutions of the Fokker-Planck-Kolmogorov (FPK)
equations. Solution of a general single degree-of-freedom (dof) system and
applications to engineering systems are included. Solution of a multi-degrees-of-
freedom (mdof) system and stochastically excited Hamiltonian systems are also
considered.
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Chapter 4 deals with the methods of statistical linearization (SL). Solutions to single
dof and mdof nonlinear systems with examples of engineering applications are
given. Uniqueness and accuracy of solutions by the SL techniques are summarized.

Chapter 5 provides an introduction to and discussion on the statistical
nonlinearization (SNL) techniques. Single dof and mdof nonlinear systems are
considered. Accuracy of the SNL techniques is addressed.

Chapter 6 treats the methods of stochastic averaging. The classical stochastic
averaging (CSA) method, stochastic averaging method of energy envelope
(SAMEE), and various other stochastic averaging techniques are introduced and
examples given. Accuracy of the stochastic averaging techniques is discussed.

Chapter 7 introduces briefly several other techniques. The lattter include
truncated hierarchy, perturbation, and functional series techniques. The truncated
hierarchy techniques include Gaussian closure schemes and non-Gaussian closure
schemes, while the functional series techniques encompass the Volterra series
expansion techniques, and Wiener-Hermite series expansion techniques.

It is assumed that the readers have a first course in random vibration or similar
subject. Materials in Chapters 2 and 3 are essential and serve as a foundation to a
better understanding of the techniques and applications in subsequent chapters.

An outline of the basic concepts and theory of probability, random variables
and random processes is included in the appendix for those who need a rapid review
of the essential background materials.
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Markovian and
Non-Markovian Solutions
of Stochastic Nonlinear
Differential Equations

2.1 Introduction

Within the field of nonlinear random vibration of structural and mechanical
systems the statistical complexity of a stochastic process (s.p.) is determined by the
properties of its distribution functions. Two types of classifications are important in
the analysis. These are classification based on the statistical regularity of a process
and classification based on its memory.

In this section the above two types of classifications are introduced in Sub-
sections 2.1.1 and 2.1.2. Then in Sub-section 2.1.3 the kinetic equation associated
with the s.p. is derived. This provides the basis for distribution and density functions
that are important to subsequent analysis. Section 2.2 contains the basic material for
Markovian solution of stochastic nonlinear differential equations. Essential features
and relevant information for non-Markovian solution of stochastic nonlinear
differential equations are included in Section 2.3.

2.1.1 Classification based on regularity
In this type of classification, s.p. are divided into two categories. They are the
stationary stochastic processes (s.s.p.) and nonstationary stochastic processes (n.s.p.).
Assuming time ¢ is the parameter of the strict sense or strong s.s.p. X(?), its
statistical properties are all independent of time ¢ or are all independent of the
absolute time origin. On the other hand, for a n.s.p. all statistical properties of that
process are dependent of time 7.

When the absolute value of the expectation of the s.s.p. X(?) is a constant and
less than infinity, the expectation of the square of X(7) is less than infinity, and the
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covariance of X(¢) is equal to the correlation function of X(¢), the s.p. is called a
wide-sense or weak s.s.p. Of course, when such a s.s.p. is Gaussian it is completely
specified by its means and covariance functions.

2.1.2 Classification based on memory

If s.p. are grouped in accordance with the manner in which the present state of a s.p.
depends on its past history, then such a classification is called classification based
on memory. This classification is centered around the Markov processes.

In accordance with the memory properties, the simplest s.p. is one without
memory or is purely stochastic. This is usually called a zeroth order Markov process.
Clearly, a continuous-parameter purely s.p. is physically not realizable since it
implies absolute independence between the past and the present regardless of their
temporal closeness. The white noise process is a purely s.p. The Markov process to
be defined in Sub-section 2.2.1 is usually called a simple Markov process. There are
higher order Markov processes that are not applied in this book and therefore are not
defined here.

It may be appropriate to note that the memory of a s.p. is not to be confused
with the memory of a nonlinear transformation. The latter is said to have memory
if it involves with inertia.

2.1.3 Kinetic equation of stochastic processes

A technique that can give explicit results of joint distributions of the solution process

is introduced in this sub-section. The foundation of the following derivation was

presented by Bartlett [2.1] and Pawula [2.2], and subsequently by Soong [2.3].
A's.p. X(#) with its first probability density function being denoted by p(x,?)

satisfies the relation that

plx.t+At) = [ plx.c+ At [y.0)ply.t)dy 2.1)

where p(x,t+At |y,t) is the conditional probability density function of X(¢+Af¢)
given that X(¢) = y.

Let Y(u,t+At |y,f) bethe conditional characteristic function of AX=X(¢+Af)
- X(¢) given that X(¢) =y,

Wlunt + Ar | p,t) = (e | y,e)

L 2.2)
= f e"Mplx,t+ At |y,t)dx, Ax =x -y,
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where the angular brackets denote the mathematical expectation.
By taking the inverse Fourier transformation, one has

plx.t+Ar | y.t) = i[“’ e "M ylu,t+ At |y,t)du . (23)
2T J-w

By expanding the conditional characteristic function (u,z+At |y,7) in a Taylor
series about u = 0, Eq. (2.3) becomes
= &ly,7)

,t+A[ 1) = e LY *lllAXd
st e [y) = B SDE 1 (ugre e

2.4)
( - l)kck(y’t) ak[é(Ax)]

2
k=0 k! ox *

where

e (.1) = ((AX)* | y,1) = ([X(¢ + Aty - X)) | X(0) = y) .

These expectations are known as the incremental moments of X(z).
Substituting Eq. (2.4) into (2.1) and after integration, one obtains

plx,t+ Ar) = i (-1)F efx.0p(x,0)] |

k-0 k! ox *

This equation can be expressed as

I B ak ] ,
B pr Al < plx gy = T 1)f 0 ey(x.0) plx.0)] |
=1 k! P

Upon dividing this equation by A¢ and in the limit as Az - 0, it leads to

aplx,t) _ = (- 1)F .0 px.0)] )
ot kZ] k! axk ’ 3)

where

o (x,t) = lim (i) <[X(t+At) —X(t)]k | X(7) :x> :

Ar-0
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Equation (2.5) is known as the kinetic equation of the s.p. X(¢) and «,(x,¢) are the
derivate moments. Itis a deterministic parabolic partial differential equation and has
important use in the solution of stochastic differential equations.

2.2 Markovian Solution of Stochastic Nonlinear Differential Equations

There are many physical quantities, such as the response of a nonlinear system
under a random excitation that can be represented by a white noise process, can be
described as Markov processes. Rigorous fundamental treatment on the subject was
presented by Kolmogorov [2.4]. The solution by the analytical techniques considered
in this monograph is generally based on the concepts of Markov processes. Thus, it
is essential to introduce these concepts. To this end, Markov and diffusion processes
are defined in Sub-section 2.2.1 while the Stratonovich and It6's integrals are
presented in Sub-section 2.2.2. Sub-section 2.2.3 is concerned with the one-
dimensional Fokker-Planck forward or Fokker-Planck-Kolmogorov (FPK) equation.
To further clarify the use of Stratonovich and Itd's integrals a single-degree-of-
freedom (sdof) quasi-linear system is included in Sub-section 2.2.4.

2.2.1 Markov and diffusion processes
A stochastic process X(¢) on aninterval [0,7] is called a Markov process if it has the
following property:

PX(e,) <x, | X1, ) =%, ;... X(t) =%, | =
(2.6)
PX(t)<x,| X, )=x, ] T>t>...>6,>1,>0,

where P[.] designates the probability of an event and the conditional probability of
the Markov process X(f), P[X(t) <x | X(¢,) =x,] is known as the transition
probability distribution function. Equation (2.6) means that the process forgets the
pastif z,_, is being regarded as the present.

Applying the Markov property (2.6), one can show that

p(x3,t3 | xl’tl) - fm p(x3,t3 ‘ xz’tz)p(xz’tz | x1’11>dx2 ’ 2.7
where p(x,t, | x.,,t.,),i=2,3, are the transition probability densities. Equation (2.7)

describes the flow or transition probability densities from instant #, to another instant
t;. It is known as the Smoluchowski-Chapman-Kolmogorov (SCK) equation.
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A Markov process X(¢) is called a diffusion process if its transition probability
density satisfies the following two conditions for Az =7-s and € >0,

. 1
lim — p(y’t ’ X,S)dy =0, 2.8a
ar-0 At flyﬂln (k)

and

.1 B
lim = [ 00RO x)dy = flxs) . (28b)

lim — f’ | v -x)py.t]| x,s)dy = G*(x,s) , (2.8¢c)
y-%x|ce

where the drift and diffusion coefficients, f{x,s) and G(x,s), respectively, are
independent of the time ¢ when X(7) is stationary because in this case p(y,? | x,s)
=p(,t-s | x) only depends on the time lag Atz.

2.2.2 Ité's and Stratonovich integrals

Consider a characteristic function on the interval [a,b] for0 < a <b < T,
For 0 < a <b < T, one defines
[ bps(0dBE) = B) - Ba) 2.10)

where B(t) is the Brownian motion process which is a martingale because

(I1B@)|) <=, 2.11a)
and forall ¢, <¢,<..<t, and aq,,..., a,,
<x(t) |x(tl):al,...,x(tn):an> =a, . (2.11b)

If f(¢) is astep functionon [0,7] and 0=¢,<¢, <..<t,=b, then



